|. Introduction

a. X3D

b. Tutorial -- Generating Initial Grids Using the X3D Command L anguage:
Define mesh objects

Define an enclosing volume

Define interior interfaces

Divide the enclosing volumes into regions

Assign material typesto the regions

Distribute points within the volume

©Coo~NOaOWOWW NN

NogarwhE

. Connect the points into tetrahedra

[EEY
N

I1. Mesh Objects

=
(63}

a. Mesh Object Definition

=
a1

b. Command Interface

=
(o]

c. FORTRAN Interface

=
oo

d. Mesh Object Connectivity

N
o

[11. X3D Commands:

N
i

a. Conventions

N
N

b. Alphabetic Listing of X3D Commands

N
(o2}

ADDMESH

ASSIGN

CMO

COPYPTS

COORDSY S

DOPING

DUMP

EDIT

ELTSET

EXTRACT

FIELD

FILTER

FINISH

GENIEE

HELP

HEXTOTET

INFILE

INPUT

INTERSECT

LOG

MERGE

MREGION

OFFSETSURE

PSTATUS

PSET

QUADXY

QUADXYZ

READ

RECON

REFINE

N~N~NOo o o1al WWWNNNNRPRPRPPOOONNO O o oo

V. Interfacing User Routinesto X3D
a. Building an executable and running X3D.
b. Issuing Commands from a user program.
c. Writing user commands

X3D REFERENCES:

REGION

REGNPTS

RESETPTS

RM

RMMAT

RMPOINT

RMREGION

RMSPHERE

RMSURF

ROTATELN

ROTATEPT

RZ

RZBRICK

RZS

SCALE

SEARCH

SETPTS

SETTETS

SMOOTH

SURFACE

SURFPTS

TRANS

ZQ

Introduction

X3D

56
56
57
58
59
59
59
59
60
60
60
61
62
62
63

65
67
70
71
71

73

73

74

75

86

X3D is a library of user callable tools that provide mesh generation, mesh optimization

and dynamic mesh maintenance in three dimensions for a variety of applications.
Geometric regions within arbitrarily complicated geometries are defined as
combinations of bounding surfaces, where the surfaces are described analytically or
as collections of points in space. A variety of techniques for distributing points within
these geometric regions are provided. Mesh generation uses a Delaunay
tetrahedralization algorithm that respects material interfaces and assures that there
are no negative coupling coefficients. The data structures created to implement this

algorithm are compact and powerful and expandable to include hybrid meshes as well

as tetrahedral meshes.

Mesh refinement and smoothing are available to modify the mesh to provide more
resolution in areas of interest. Mesh refinement adds nodes to the mesh based on
geometric criteria such as edge length or based on field variable criteria such change
in field. Mesh smoothing moves nodes to adapt the mesh to field variable measures,
and, at the same time, maintains quality element shape. Mesh elements may become
distorted as mesh nodes move during a time dependent simulation or are added as a
result of refinement operations. Mesh reconnection via a series of edge flips will
maintain the non-negative coupling coefficient criterion of the mesh while eliminating
highly distorted elements.

An additional requirement of time dependent simulations is that as interface surfaces
move, the corresponding region definitions must respond dynamically. As surfaces
collide, the mesh must respond by merging points and effectively squeezing out the
material between the colliding surfaces. X3D provides the necessary tools for time
dependent simulations.

b. Tutorial -- Generating Initial Grids Using the X3D Command Language:

The steps involved in generating three dimensional grids in the X3D command
language are:

1. Define mesh objects.

2. Define an enclosing volume.
Define interior interfaces.

o

Divide the enclosing volume into regions.
Assign material types to the regions.
. Distribute points within the volume.

7. Connect the points into tetrahedra
Detailed descriptions of the X3D commands are given in Section Ill. This tutorial
covers just the commands needed to generate a simple grid. The tutorial will explain
how to generate a grid in a unit cube containing two materials separated by a plane.

o o

1. Define mesh objects

Define all Mesh Objects to be used in this problem using the cmo/create command.
The cmo/create command establishes an empty Mesh Object data structure (see
Section Il.a for a description). For this example we will need only a single 3D Mesh
Object:

* create a 3D tetrahedral mesh object and name it 3dmesh
cmol/create/3dmesh/

2. Define an enclosing volume

Define an enclosing volume using the surface command. Since we are defining an
exterior boundary, the boundary type is reflect. The next item of information needed
is the geometry of the volume; some common geometry types are box, cylinder,
sphere. Geometry types, box and sphere, define closed volumes; whereas a cylinder
is open on both ends and must be capped by planes. Along with the geometry type,
the extent of the volume is defined by specifying for the box its corners, or for the
cylinder its radius and end point of its axis of rotation. The enclosing volume must be
convex. Complicated enclosing volumes can be described by their bounding surfaces
including planes and sheets . Some simple examples of enclosing volumes are:

* unit cube

surface/cube/reflect/box/ 0.0, 0.0, 0.0/1.0, 1.0, 1. 0/

y-axis
Z-axis
A (1,1,2)
cube
/ >
(0,0,0) X-axis

* cylinder whose axis is the x axis with radius 1 and height 1
surfacelcyl_vol/reflect/cylinder/0.,0.,0./1.,0.,0./1./
surface/endl/reflect/plane/0.,0.,0./0.,0.,1./0.,1.,1./
surface/end2/reflect/plane/ 1.,0.,0./1.,0.,1./1.,1.,1./

5 , (1.0.)
—
(0,0,0) .
cyl_vol X-axis

end2

hollow cylinder \

capped cylinder

endl

3. Defineinterior interfaces

Interfaces are defined with the surface command. In this case the boundary type is
intrface. If the command defines a volume (e.g. box, cylinder) then the interface is the
surface of the volume defined. If the command defines a plane or sheet then the
interface is the plane or sheet. It is important to remember that planes are infinite and
that the order of points specifying the plane determines a normal to the plane in the
usual right-hand-rule sense (see Section Ill.a.9). This direction is important in
determining regions. In order to divide the unit cube defined above in half vertically,
define a plane by:
surface/cutplane/intrface/plane/0.,0.,.5/1.,0.,.5/1.,1.,.5/
The normal to this plane points in the positive z direction.

Z-axis

(1,1,2)

cutplane

cube / (1,1,.5)
/.

(0,0,0) X-axis

(0,0,.5)

‘cube’ bisected by the infinite plane 'cutplane’

Interfaces must not be coincident with reflective boundaries. For example to embed a
rectangle inside a cube, it is necessary to extend the ends of the rectangle beyond the
cube to avoid coincident reflective and interface surfaces:
surface/cube/reflect/box/ 0. 0,0.0,0.0/1.0, 1.0, 1. 0/
surface/rectintrface/box/-0.1,0.5,0.2/1.1,0.6, 0.5/

Z-axis
A (1,1,1)
cube
E rect i
/
(0,0,0) X-axis

‘cube’ with embedded 'rect’, 'rect' extended
beyond planar surfaces of ‘cube’ to avoid
coincident interface and reflective surfaces

4. Dividethe enclosing volumesinto regions

The region command is used to divide the enclosing volume into regions. The
operators It, le, gt, and ge are applied to previously defined surfaces according to the
following rules.
It -- if the surface following is a volume then It means inside not including the
surface of the volume. If the surface is a plane or a sheet It means the space on
the side of the plane or sheet opposite to the normal not including the plane or
sheet itself.
le -- if the surface following is a volume then le means inside including the
surface of the volume. If the surface is a plane or a sheet le means the space
on the side of the plane or sheet opposite to the normal including the plane or
sheet itself.
gt -- if the surface following is a volume then gt means outside not including the
surface of the volume. If the surface is a plane or a sheet gt means the space
on the same side of the plane or sheet as the normal not including the plane or
sheet itself.
ge -- if the surface following is a volume then ge means outside including the
surface of the volume. If the surface is a plane or a sheet ge means the space
on the same side of the plane or sheet as the normal including the plane or
sheet itself.
The operators or, and, and not applied surfaces mean union, intersection and
complement respectively. The operators or, and, and not applied to relational
operators are the normal logical operators. Parentheses are used for nesting. Spaces
are required as delimiters to separate operators and operands. To define the two
regions created by the plane bisecting the unit cube:
region/top/ le cube and gt cutplane /
region/bottom/ le cube and le cutplane /
The region bottom contains the interface cutplane; top contains none of the interface.
Interior interfaces must be included in one and only one region.
If a region touches an external boundary, include the enclosing volume in region and
mregion commands. For example, the regions top and bottom are enclosed in the
volume cube

Z-axis

A (1,1,1)
top
/ 4 (1,1,.5)
(0,0,.5) [~ cutplane
bottom
/.
(0,0,0) X-axis

‘cube’ consisting of two geometric regions: 'top' and 'bottom’

5. Assign material typesto theregions

Assign materials to regions using the mregion command. This command has similar
syntax to the region command except that the interface should not be assigned to any
material region. To assign two materials, mattop and matbot, to the regions top and
bottom:

mregion/mattop/ le cube and gt cutplane /

mregion/matbot/ le cube and It cutplane /

Z-axis

A (1,1,1)
mattop
/ 4 (1,1,.5)
(0,0,.5) [~ cutplane
matbot /
>
(0,0,0) X-axis

‘cube’ containing two materials: ‘'mattop’' and 'matbot’

6. Distribute pointswithin the volume

Points are distributed within regions using Cartesian, cylindrical or spherical
coordinates by constructing rays that travel through regions and distributing points
along these rays. For this example, points are distributed using Cartesian coordinates.
The rays are specified by defining a set of points and a plane. For each point in the
set, a ray is constructed normal to the plane passing through the point. In general rays
are constructed in sets, each set is specified by a single plane and a set of points. The
rz command is used to create the points. The regnpts command is used to specify the
plane, to specify the region, and to specify the number of points to be distributed along
the rays. The points and the plane should lie outside the enclosing volume and on
opposite sides. The normal to the plane should point toward the point. As rays are
created, if they do not pass through the specified region, no points are distributed.
Points may be spaced evenly along the ray or they may be spaced according to a
ratio. The following commands will place points in the unit cube.

* create 25 points (5x5x1) in a plane above the unit cube

* place points on the boundaries in the x and y directions (1,1,0)

rz/xyz/5,5,1/0.,0.,1.1/1.,1.,1.1/1,1,0/

* give the points defined by the rz command the name, rayend

pset/rayend/seq/1,0,0/

Z-aXIS X X X X X
X X X X X , ,
X X X X X rayend
X X X X X ;
K X X X X points
cube
>
(0,0,0) X-axis

* create rays between points in rayend and the plane below the cube
* distribute 3 points along these rays in the region top

* add one point at the upper external boundary for each ray

* will get 4 points total along each ray in region top
*"pset,get,rayend" refers to all the points named rayend

* the three points: (0.,0.,-.1), (0.,1.,-.1), (1.,1.,-.1)

* define a plane whose normal points toward the rayend points
regnpts/top/3/pset,get,rayend/xyz/0.,0.,-.1/0.,1.,-.1/1.,1.,-.1/0,0/

<€— rayend points
h <@— upper
B boundary of
‘cube’

region
ltopl

D

O O O O X
=
Nd

O O O O

D

< ‘cutplane’
interface

lower
boundary of
<4— 'cube’

V\‘\f/‘/’ ® base plane

rays

front face of cube showing one row of 'rayend' points and
one set of 5 rays. Points are distributed in the region 'top'.

10

* distribute 4 points along these rays in the region bottom

* add one point at the lower external boundary for each ray

* add one point at the material interface for each ray since

* bottom contains the interface - a total of 5 points for each ray.

* points will be distributed such that the ratio of distances between

* any two consecutive pairs of points is 0.6 traveling from the source
* of the ray (the plane) to the ray end.
regnpts/bottom/4/pset,get,rayend/xyz/0.,0.,-.1/0.,1.,-.1/1.,1.,-.1/1,.6/

<€¢— rayend points

X
5 D & 5 D <@— upper
D [0}) D D boundary of
) 0)) D cube
D 0 D D D
T {) F d <4 ‘cutplane’
region : interface
‘bottom’
i [i i i lower
boundary of
D ‘cube’
< # base plane

rays

front face of cube showing one row of ‘rayend' points and
one set of 5 rays. Points are distributed in the region 'bottom’.

Other versions of the regnpts are appropriate for cylindrical and spherical geometries.
For cylindrical geometries the rz command specifies points in a cylindrical shell
outside the volume. The regnpts command specifies a line (usually the cylinder axis),
and the rays are constructed normal to this line and containing one of the rz points.
For spherical geometries the rz command specifies points in a spherical shell outside
the volume. The regnpts command specifies a point (usually the center of the sphere)
from which rays are constructed to the rz points.

If there are other regions that intrude on the region in which points are being
distributed, then the effect is that of laying down a background distribution of points
and erasing those that occur in the interior of the intruding regions.

11

7. Connect the pointsinto tetrahedra

The mesh designer may use the following set of command to connect the points into a
tetrahedral mesh:

* eliminate coincident or nearly coincident points

* 1,0,0 means consider all points

filter/1,0,0/

* rayend points are set to invisible (dud is the code for invisible)

* they were used as end points of the rays in the regnpts command

zqlitp/pset,get,rayend/dud/

* assign material colors to the points

* identify points that are on material interfaces

* identify constrained points

setpts

* connect the points into a Delaunay tetrahedral mesh

* do not connect across material interfaces - add points if necessary to resolve

material interfaces

search

* set element (tetrahedral) type

* spawn child points at material interfaces

settets

* dump mesh to some output form

dump/gmv/filename

* terminate processing
finish

12

The complete input for the tutorial is:

* create a 3D tetrahedral mesh object and name it 3dmesh
cmo/create/3dmesh/

* unit cube

surface/cube/reflect/box/ 0. 0, 0.0, 0.0/1.0, 1.0, 1. 0/

* define z=.5 plane as interface
surface/cutplane/intrface/plane/0.,0.,.5/1.,0.,.5/1.,1.,.5/
*define geometric regions

region/top/ le cube and gt cutplane /

region/bottom/ le cube and le cutplane /

* define material regions

mregion/mattop/ le cube and gt cutplane /

mregion/matbot/ le cube and It cutplane /

* create 25 points (5x5x1) in a plane above the unit cube

* place points on the boundaries in the x and y directions (1,1,0)
rz/xyz/5,5,1/0.,0.,1.1/1.,1.,1.1/1,1,0/

* give the points defined by the rz command the name, rayend

13

pset/rayend/seq/1,0,0/

* create rays between points in rayend and the plane below the cube
* distribute 3 points along these rays in the region top

* add one point at the upper external boundary for each ray
regnpts/top/3/pset,get,rayend/xyz/0.,0.,-.1/0.,1.,-.1/1.,1.,-.1/0,0/

* distribute 4 points along these rays in the region bottom

* add one point at the lower external boundary for each ray

* add one point at the material interface for each ray since

* bottom contains the interface - a total of 5 points for each ray.

* points will be distributed such that the ratio of distances between
* any two consecutive pairs of points is 0.6 traveling from the source
* of the ray (the plane) to the ray end.
regnpts/bottom/4/pset,get,rayend/xyz/0.,0.,-.1/0.,1.,-.1/1.,1.,-.1/1,.6/
* eliminate coincident or nearly coincident points

* 1,0,0 means consider all points

filter/1,0,0/

* rayend points are set to invisible (dud is the code for invisible)

* they were used as end points of the rays in the regnpts command
zqlitp/pset,get,rayend/dud/

* assign material colors to the points

* identify points that are on material interfaces

* identify constrained points

setpts

* connect the points into a Delaunay tetrahedral mesh

* do not connect across material interfaces -

* add points if necessary to resolve material interfaces

search

* set element (tetrahedral) type

settets

* dump mesh to some output form

dump/gmv/filename

* terminate processing

finish

14

1. Mesh Objects

a. Mesh Object Definition

The data structure which contains the information necessary to define a mesh is called
a Mesh Object. A Mesh Object consists of attributes and parameters. There is a
default template for a Mesh Object which consists of the following attributes:
name (mesh object name)
nnodes (number of nodes in the mesh)
nelements (number of elements in the mesh, e.g. triangles, tetrahedra)
nfaces (number of unique topological facets in the mesh, e.g. number of
edges in 2D or number of element faces in 3D) -- (not used)
nedges (number of unique edges in mesh) -- (not used)
mbndry (value signifying that if the node number is greater that mbndry
then the node is a boundary node)
ndimensions_topo (topological dimensionality,1, 2 or 3, i.e. a non-planar
surface would have ndimensions_topo = 2 and
ndimensions_geom = 3.)
ndimensions_geom (1, 2 or 3 for dimension of geometry)
nodes_per_element
edges_per_element
faces_per_element (topological number of facets per element (i.e. in
1D this number is always 2, for 2D use the number of edges of the
element, for 3D use the number of faces of the element.)
isetwd (integer array containing pset membership information, see pset
command definition)
ialias (integer array of alternate node numbers, i.e. for merged points)
imtl (integer array of node material)
itpl (integer array of node type - type 2 20 node will be invisible)

pointtype name description
0 int Interior
2 ini Interface
3 vrt Virtual
8 vif Virtual + interface + free
9 alb Virtual + Interface + free + reflective
10 rfl Reflected boundary node
11 fre Free boundary node
12 irb Interface node on reflected boundary

15

13
14

15

16
17
18
19
20
21
41

ifb
rfb

irf

vrb
vfb
vfb
vit
mrg
dud
par

Interface node on free boundary

Node on intersection of free boundary and
reflective boundary

Interface node on intersection of free boundary
and reflective boundary

Virtual node on reflective boundary

Virtual node on free boundary

Virtual node on free + reflective boundary
Virtual + interface node on reflective boundary
Merged node

Dudded node

Parent node

icrl (integer array of constraint numbers for nodes)

isnl (integer array of child, parent node correspondence)
Points on material interfaces are given point type 41 (parent). One
child point is spawned for each material meeting at the parent

point.

The isnl field of the parent point will contain the point

number of the first child point. The isnl field of the first child will
contain the point number of the next child. The isnl field of the last
child will contain the point number of the parent. The point types
of the child points will be 2, 12 or 13 depending on whether the
interface point is also on an exterior boundary. This parent, child
relationship is established by the settets command.

ignl (integer array of generation numbers for nodes)

xic, yic, zic (real arrays of node coordinates)

itetclr (integer array of element material)

itettyp (geometry of element)

name
ifelmpnt
ifelmlin
ifelmtri
ifeimqud
ifelmtet
ifelmpyr
ifelmpri
ifelmhex
ifelmhgb
ifelmply

value

OCO~NOUIA,WNEF

10

description
point

line

triangle
guadrilateral
tetrahedron
pyramid
prism
hexahedron
hybrid
polygon

xtetwd (real array containing eltset membership information, see eltset
command definition)

itetoff (index into itet array for an element)

jtetoff (index into jtet array for an element)

16

itet (integer array of node vertices for each element)
jtet (integer array of element connectivity)

The default Mesh Object can be expanded by adding user defined attributes
(see cmo/addatt). There are four special user defined attributes: velocity,
density, pressure and energy; these attributes have pre-defined names which
are stored as Mesh Object parameters. Most Mesh Object parameters are
relevant only to the physics model, and the physics parameters will be
documented in a later volume (a full list of all parameters will appear in the
response to a help command under the heading: The CMO commands). The
parameters relevant to grid generation are:

Name Default Description
densname dens Name of the user added density attribute
presname pres Name of the user added pressure attribute
enername ener Name of the user added energy attribute
velname vels Name of the user added velocity attribute
epsilon 10.e-15
epsilonl 10.e-8 Minimum edge length
epsilona 10e-8 Minimum facet area
epsilonv 10e-8 Minimum element volume
ipointi 0 First point added by last generate step
ipointj 0 Last point added by last generate step
ipoints 0 Point stride of last generate step
var0,...var9 0 Available for user
itypconv_sm Smoothing parameters see smooth
maxiter_sm
tolconv_sm

The value of parameters can be changed by the assign command.

X3D will add attributes to the mesh object in certain instances. For example, if
there are any constrained surfaces, reflect, virtual or intrcons types, the
following attributes are added to the mesh object:
NCONBND number of combinations of constrained
surfaces
ICONBND(50,NCONBND)

17

ICONBND(1,i) number of surfaces contributing to the
ith constraint

ICONBND(2,i) degree of freedom of the ith constraint

ICONBND(2+j,i) Surface number of the jth surface
contributing to the ith constraint

In order to determine which constraint entry applies to node ip, retrieve the

value i=icrl (ip), i.e. ICONBND(1, icrl(ip)) gives the number of surfaces that

ip is ‘on’. Ificrl(ip) is zero there is no constraint on that node.

TENSOR Dimension of XCONTAB

XCONTAB(TENSOR,NPOINTS) This is a 3x3 matrix which multiplied by
the velocity vector, constrains the
velocity to the number of degrees of
freedom possessed by the node.

Command Interface

The default Mesh Object is named 3dmesh For simple problems the user must
supply only a cmo/create/mesh_obj ect _name command. There is no limit on
the number of Mesh Objects that can be defined, but at any time there is only
one ‘current’ or ‘active’ Mesh Object. For more advanced problems, such as
those requiring more than one Mesh Object or requiring extensions to the basic
Mesh Object template, the Mesh Object(s) is(are) manipulated via the cmo
commands which are described in the next section. For example, additional
user defined attributes may be added to a Mesh Object by using the cmo/addatt
command, or the 'active’ Mesh Object can be changed using the cmo/select
command.

FORTRAN Interface

Mesh Object attribute data are accessed through a set of subroutines. An example of
accessing an existing Mesh Object and creating a new mesh object is given in

18

Section 1V; that example should be used as a template when operating with Mesh
Objects. The subroutine set includes:

cno_get _nane
cno_set _nane
cnmo_get _info
cno_set _info
cno_new en

Only data from the active Mesh Object may be retrieved; calling cno_set _nane will

retrieve active mesh object name

set active mesh object name

retrieve mesh object data

set mesh object data

adjust mesh object memory allocation

make the Mesh Object active. Scalar quantities are retrieved and stored using
cno_get _info and cno_set i nfo. Vector quantities are referred to by their

pointers. The length of the vectors is calculated internal to X3D based on the scalar

mesh object variables. Memory allocation for a new mesh object or for a mesh object
which will grow in size is accommodated by setting the appropriate scalars for the
Mesh Object and calling cno_newl en. cno_set i nf o with the new number of

elements and/or nodes and cno_new en must be called before adding to the size of a

Mesh Object.

Mesh object parameters are retrieved with the get _i nf o_c subroutine.
See V.e.l for a list of . mesh object subroutines .

19

d.

Mesh Object Connectivity

The Mesh Object attributes, itettyp, itetoff, jtetoff, itet, and jtet along with the
variables contained in the include file local_element.h completely describe the mesh
connectivity. The following discussion is based on the concept of local facets and
local edges for an element. The nodes comprising a given element are always
specified in a well-defined order; hence when one references the 'second facet' of an
element, one references a pre-defined set of points. Consider a tetrahedral element,
with nodes labeled as in the diagram:

I 4

The points are oriented so that the triple product I,1," 11,1, is positive, and the

volume of the tet is one-sixth of the triple product. The local facets are defined as
follows:

F]_ = |2 |3 |4
F2 = |1 |4 |3
F3 = |1 |2 |4
F4 = |1 |3 |2
The local edges for a tetrahedral are defined as follows:
E1 Il 2
E2 l1 I3
Es Iy I4
E4 > I3
Es I I4
Es I3 I4

Similarly, local facets and local edges are defined for all element types.
itettyp(it) gives the element type of element it.

20

itetoff(it) gives the offset to the first node in element it.
itet(itetoff(it)+j) gives the jth node of element it.
nelmnen(itettyp(it)) gives the number of nodes of element it.
To loop through all the nodes of all elements in the mesh:
do it=1,ntets
do j=1,nelmen(itettyp(it))
k=itet(itetoff(it)+)
enddo
enddo
nelmnef(itettyp(it)) gives the number of facets of element it.
ielmfaceO(iface,itettyp(it)) gives the number of nodes on facet iface of element
it.
ielmfacel(local_node,iface,itettyp(it)) gives the increment to the node number
(local_node) on facet iface of element it.
To loop through all the nodes, k, of all elements in the mesh by facets:
doit=1,ntets
do i=1,nelmef(itettyp(it))
do j=1,ielnfaceO(i,itettyp(it))
k=itet(itetoff(it)+
ielnfacel(j,i,itettyp(it)))
enddo
enddo
enddo
nelmnee(itettyp(it)) gives the number of edges of element it.
ielmface2(inode,iface,itettyp(it)) gives the edge number associated with inode
on facet iface of element it.
ielmedgel(1|2,iedge,itettyp(it)) gives the node offset associated with edge
iedge of element it.
To loop through all pairs of edge nodes (i1,i2) of all elements in the mesh :
doit=1,ntets
do i=1,nelmee(itettyp(it))
il=itetl(itetof f(it)+
ielmedgel(l,i,itettyp(it)))
i2=itetl(itetof f(it)+
i el medgel(2,i,itettyp(it))
enddo

21

enddo

To loop through all pairs of edge nodes (i1,i2) of all elements in the mesh by
facets:
do it=1,ntets

do i=1,nelmef(itettyp(it))
do j=1,ielnfaceO(i,itettyp(it))
ie=ielnface2(j,i,itettype(it))
il=itet(itetoff(it)+
i el medgel(1l,ie,itettyp(it)))
i2=itet(itetoff(it)+
i el medgel(2,ie,itettyp(it)))
enddo
enddo
enddo

jtet(itetoff(it)+j) gives the element number and local facet number of the
neighbor to element it, facet j.

To loop find all neighbors of elements (jt is neighbor element number, jf is facet
of neighboring element), (mbndry is the value added to jtet if element it
is on a boundary or interface; the jtet value of an element it with facet j on
an exterior boundary will be exactly mbndry; the jtet value of an element
it with facet j on an interior interface will be mbndry + the jtet value
calculated from the neighboring element number and neighbor element
local_facet number):

c set nunber of faces per elenent for this nesh object

call crno_get _info(‘faces_per el enent’, cno_nane,

nef cno,ilen,ity,ics)

do it=1,ntets
do i=1,nelmef(itettyp(it))

c check if elenment face is on an external boundry

if(jtetdl(jtetoff(it)+i).eq.nbndry) then
jt=0
jf=0
c check if elenment face is @n an internal boundry
elseif(jtetl(jtetoff(it)+i).gt.nmbndry) then
jt=1+(jtetdl(jtetoff(it)+i-nbndry-1))
/ nef _cno

22

C Vol unme el enent

enddo
enddo

el se

endi f

jf=jtetl(jtetof f(it)+i)-nbndry-1)+(
nef _cno*(jt-1)

jt=1+(jtetdl(jtetoff(it)+i)-1/nef-cno
jf=jtetdl(jtetoff(it)+i)-nef-cmo*(jt-1)

23

X3D Commands:

a. Conventions

Following in Section lll.b is list of the X3D commands. These commands are given in
alphabetic order. Conventions that apply to all commands include:
1. Lines are a maximum of 80 characters long, identifiers are a maximum of 32
characters long.
2. Continuation lines are signaled by an "&" as the last character of a line to be
continued. A command can be up to 1024 characters long.
3. Delimiters are comma, slash, equal sign, or blank. (', /" '=").
Blanks on either side of other delimiters are ignored. Leading blanks are ignored.
Commas are usually used for parameters that belong to the same logical set such as
first point, last point, stride. Slashes are usually used to separate sets of
parameters.
4. The three parameters: first point, |ast point, stride canhave integer
values which refer to actual sequential point numbers or they can have the character-
string values:
pset, get, nanme where nane has been defined by a previous pset command. The
triplet: 1, O, O refers to all points. The triplet: 0, O, O refers to the set of points defined in
the last geometry command.
5. Commands should be typed in lower case, however names are case sensitive.
In the command description that follows certain symbols have special meaning.

[] surround optional parameters

| signifies alternate choices

, 0r/ separates parameters
6. Courier font is used for variable names such asifirst.

bold is used for literals such as xyz.
7. Comments are identified by * in the first column. Comments are parsed; avoid
using special characters especially ‘& in comments.

8. All names (surface, region, pset,...) should be limited to 32 characters.
9. The right hand rule is used to determine normals to planes and to sheet surfaces.
The first two points determine the first vector and the first and third point determine the
second vector. By curling the fingers of the right hand from the first vector toward the
second vector, the right thumb will point in the direction of the normal.

24

direction
of
normal

2

10. To separate commands on the same line use a semicolon (;).

11. Three coordinate systems are used.

xyz refers to the standard Cartesian coordinate system

rtz refers to a cylindrical coordinate system aligned along the z-axis, where r is
the radius measured from the zaxis, t (theta) is the angle measured in the xy-
plane from the positive x-axis toward the positive y-axis and z is the height

measured from the xy-plane.

rtp refers to a spherical coordinate system, where r is the radius measured from
the origin, p (phi) is the angle in the xy-plane measured from the positive x-axis
toward the positive y-axis, t (theta) is the angle measured from the positive z-axis

to the positive y axis.

Z-axis

N
\

\
®

|
! y-axis
|
|

a~ .
~—

z

AN

X-axis

cylindrical coordinates

rtz

position of @
determined by

r radius

t theta (angle from x-axis)
Z height

spherical coordinates

rtp

position of @

determined by

r radius measured from origin

t theta (measured from positive z-axis)
p phi (measured from positive x-axis)

25

b. Alphabetic Listing of X3D Commands

ADDMESH

This routine glues two meshes together at their common interface to produce a third
mesh.

FORMAT:
addmesh / glue / mesh3 / meshl/ mesh2/

ASSIGN

Assign a value to a code variable.
FORMAT:
assign/category_name/column/variable_name/value.
EXAMPLES:
assign/-def-/-def-/epsilonl/1.e-4/

CMO

The cmo command operates on the Mesh (bj ect (MD). There can be many Mesh
oj ect s in the code for a given problem. Only one of these Mesh (bj ect s may by the
Current Mesh Qbject. Thereis alsoone Default Mesh Obj ect which is used as
the template for generating new Mesh (bj ect s.

FORMAT:
cmo/addatt /no_nane/at t _name/t ypel/r ank/l engt h/i nt er pol ati on/

per si st enceli olval ue/
compress/no_nane/
copy/nmo_nane/mast er _no/
create/mo_namne/npoi nt s/ nel enent s/ mesh_t ype/
create/mo_name/npoi nt s/ nel enent s/ ndi mensi ons_geom ndi mensi ons_t opo/
nodes_per _el enent/faces_per_el enent/ edges_per _el enent/
delatt/mo_nane/att name/
derive/mo_nane/mast er _no/
length/mo_nane/att _nane/
list
memory/mo_nane/nunber _nodes/ nunber _el enent s/

26

modatt/mo_nane/att _nane/fi el d_nane/ new fi el d/
move/no_nane/mast er _no/

newlen/no_nane/

release/no_nane/

select/no_nane/

status/no_nane/

verify/mo_nane/

CONVENTION: As a result of any command that generates a new Mesh (bj ect , the
newly generated Mesh (bj ect becomesthe Current Mesh Qoj ect.

RESERVED NAMES: The following names are reserved and may not be used for Mesh
(hj ect names:

-cmo- the Current Mesh (oj ect
-default- the Default Mesh (oj ect
-all- all Mesh bj ectsorAttributes
-notset- Null name for Mesh (bj ect

TYPES ,DEFAULTS and POSSIBLE VALUES:

no_narne is type character

att _nane is type character

mesh_type is type character
(tet,hex,pri,pyr,tri,qua,hyb)

type is type character, default is VDOUBLE
(VDOUBLE, INT, VINT)

r ank is type character, default is scalar
(scalar,vector,tensor)

| engt h is type character, default is nnodes
(nelements, nnodes)

i nterpol ate is type character, default is linear

(copy, sequence, linear, log, asinh, max,
min, user,and,or,incmax)

per si st ence is type character, default is temporary
(permanent, temporary)
i of | ag is type character, default is agx

(a, g, 1, s, x, no -- for avs,gmv,fehms,sgi,x3d)

27

def aul t is type real, default is 0.0

npoi nt's is type integer, default is Def aul t MO
nel emrent s is type integer, default is Def aul t MO
ndi mensi ons_geom is type integer, default is Def aul t MO

ndi mensi ons_t opo is type integer, default is Def aul t MO
nodes_per el enent s type integer, default is Def aul t MO
faces_per_el enent s type integer, default is Def aul t MO
edges_per _el enent is type integer, default is Def aul t MO

addatt/no_nane/att _nane/t ypelr ank/l engt h/i nt er pol at e/per si st enceli o/val ue/
no_nane required
att _name required
Adds the Attribute, att _name, toMesh Cbj ect, no_nane. See the modatt
command for more details on the field variables.

Examples:
cmo/addatt/cnol/bor on1/VDOUBLE/scalar/nnodes/asinh/permanent/gx/1.0
cmo/addatt/-cmo-/bor on2/VDOUBLE/scalar/nnodes/asinh/permanent/gx/2.0
cmo/addatt/cnol/bor on3/VDOUBLE/scalar/nnodes/user/temporary/gx/3.0
cmo/addatt/-default-/bor on/VDOUBLE/scalar/nnodes/asinh/temporary/no/3.
cmo/addatt/-default-/bor on3

compress/no_nane/
no_nane is type character, default is -cmo-
Shortens all memory managed arrays for Mesh (bj ect no_nane to their actual
lengths.

Examples:
cmo/compress/no_t et 2
cmo/compress/-cmo-
cmo/compress
cmo/compress/-all-

copy/mo_nane/mast er _no/
no_nane is type character, required.
mast er _no is type character, default is '-cmo-'

28

Makes an exact copy of Mesh Cbj ect, mast er _no, including all data. The output
Mesh (bj ect, no_nane, will become the Current Mesh (oj ect. Ifno_nane is
the same as nast er _no nothing happens.

If mo_narme exists it is over written.

Examples:

cmo/copy/no_tet2/mo_tetl

cmo/copy/-cmo-/mo_tet 1l

cmo/copy/no_tet?2

cmo/copy/no_t et 2/-cmo-

create/no_name/npoi nt s/nel ement s/ tet|hex|pri|pyr|trijqualhyb/
or

create/no_nane/npoi nt s/nel ement s/ndi mensi ons_geomndi nensi ons_t opo/
nodes_per el enent /f aces_per _el enent /edges_per _el enent /
Creates a new Mesh Object 'no_nane', which becomes the Current Mesh (bj ect.
If a Mesh is created using the first (mesh_type) format, then values are supplied for the

other parameters as follows:
mesh ndimension ndimension nodes_per faces per edges_per

name geom topo element element element
tet 3 3 4 4 6
hex 3 3 8 6 12
pri(sm) 3 3 6 5 9
pyr(amid) 3 3 5 5 8
trilangle) 3 2 3 3 3
qua(d) 3 2 4 4 4
hyb(rid) 3 3 10 10 12

If mo_name exists nothing happens.
no_nane required.

Examples
cmo/create/no_tet 2
cmo/create/no_t et 2/0/0/hex

delatt/mo_nane/att _nane/
Deletes the attribute at t _nane from Mesh (bj ect, no_nane. Will not delete an
attribute with a per si st ence of permanent
no__name must be specified.
att _name must be specified.

29

Examples
cmo/delatt/mo_t et 2/ bor on
cmo/delatt/-cmo-/bor on
cmo/delatt/-default-/bor on
cmo/delatt/-cmo-/-all- (this will delete all attributes with per si st ence of temporary)

derive/mo_nane/mast er _no/

Mo_nane is type character, required.

mast er _no is type character, default is -cmo-

Uses Mesh (bj ect, nast er _no, as the template for deriving Mesh bj ect,
nmo_nane. Mesh bj ect, no_nane, will be an image of mast er _no but will
contain no data. The output Mesh (bj ect, no_nane, will become the Current
Mesh oj ect . If no_nane is the same as nast er _no nothing happens. If no_nane
exists it is over written.

Examples:
cmo/derive/nmo_tet2/no_tetl
cmo/derive/-cmo-/no_tet 1l
cmo/derive/no_tet 2
cmo/derive/no_t et 2/-cmo-
cmo/derive/-default-/-cmo-
cmo/derive/no_t et 2/ -default-
cmo/derive/-default-/no_tet 1

length/mo_nane/att _nane/
no_nane is type character, default is -all-
att _name is type character, default is -all-
Returns the memory length of attribute att _nane f or Mesh Obj ect, no_nane.

Examples:

cmo/length/no_t et 2/bor on
cmo/length/-cmo-/bor on
cmol/length/-default-/bor on
cmo/length/-cmo-/-all-
cmo/length/mo_t et 2/-all-
cmol/length

30

cmol/length/-all-/-all-
cmol/length/-all-/bor on

list
Returns the name of the Current Mesh (bj ect and a list of all defined Mesh
hj ect s

Examples:
cmollist

memory/mo_nane/nunber _nodes/nunber el enent s/
Allows the user to preset the size of the memory managed arrays for Mesh (bj ect
no_nane.
no__narme required.
nunber nodes required.
nunber _el enent s required.

Examples:
cmo/memory/no_t et 2/1000/10000
cmo/memory/-cmo-/1000/10000

modatt/mo_nane/att _nane/fi el d_nane/ new fi el d/
Modifies the field f i el d_nane for attribute at t _nane in Mesh Cbj ect no_nane.
no__narme required.
att _nane required.
fi el d_nane is type character, required
new fi el d isthe type of the field, required
Fi el d_nanes (may be lower or upper case):

name - (character) Attribute name
type - (character) Attribute type:
| NT- Integer

VI NT - Vector of integer

VDOUBLE - Vector of real*8
r ank - (character) Attribute r ank (must be an attribute for this Mesh obj ect)
| engt h - (character) Attribute length (must be an attribute for this Mesh obj ect)
i nterpol ati on - (character) Interpolation option:

31

constant - Constant value

sequence - Next is previous plus 1
copy - Copy values
linear - Linear interpolation
user - User provides
log - Logarithmic interpolation
asinh - Asinh interpolation

per si st ence - (character) Attribute persistence:
permanent - Can not be deleted
temporary - Temporary attribute

i of | ag - (character) Attribute 10 flag:
a - Put this attribute on avs dumps
g - Put this attribute on gmv dumps
f - Put this attribute on fehms dumps
S - Put this attribute on sgi dumps
X - Put this attribute on x3d dumps

no - Ignore this attribute
default (real) Attribute value

Examples:
cmo/modatt/no_t et 2/bor on/l engt h/nnodes
cmo/modatt/-cmo-/bor on/l engt h/nnodes
cmo/modatt/-cmo-/bor on/def aul t /10.0
cmo/modatt/-default-/bor on/def aul t /10.0

move/no_nane/mast er _no/
no_nane is type character, required.
nmast er _no is type character, default is -cmo-'
Changes the name of Mesh (bj ect, naster _no, tono_nane. The output Mesh
oj ect, no_name, will become the Current Mesh (bj ect.If no_nane is the
same as nast er _no nothing happens. If no_nane exists it is over written.

Examples:
cmo/move/nmo_tet2/no _tetl
cmo/move/-cmo-/no_tet 1
cmo/move/mo_tet 2

cmo/move/no_t et 2/-cmo-

newlen/nmo_nane/
no_nane is type character, default is -cmo-
Changes the length of all memory managed arrays for Mesh Cbj ect no_nane to the
proper length.

Examples:
cmo/newlen/no_t et 2
cmo/newlen/-cmo-
cmo/newlen

release/no_nane/
no_nane is type character, required.
Deletes the Mesh (bj ect no_nare.

Examples:
cmo/release/no_tet 2
cmo/release/-cmo-

select/no_narne/
no_nane is type character, required.
Selects Mesh (bj ect no_nane to be the Current Mesh (bj ect . If no_nane does not
exist a new Mesh (bj ect will be created using the Def ault Mesh (bj ect as the
template.

Examples:
cmo/select/mo_tet 2

status/no_narne/
no_nane is type character, default is "-all-'
Prints the status of Mesh (bj ect s.

Examples:

cmo/status/no_tet 2
cmo/status/-cmo-

33

cmo/status
cmo/status/-all-
cmo/status/-default-

verify/mo_nane/
no_nane is type character, default is "-all-'
Verifies that Mesh Cbj ect no_nane is consistent.

Examples:
cmo/verify/mo_tet 2
cmolverify/-cmo-
cmolverify
cmolverify/-all-
cmolverify/-default-

COPYPTS

Copy a point distribution. There are two distinct forms of this command. The first format is
designed to copy points from one mesh object into another. In this form if the names of
the source and sink mesh objects are omitted, the current mesh object will be used. The
copy may be restricted to a subset of points by including the source point information.
Points in the sink mesh object will be overwritten if si nk_stri de is not zero. Attribute
fields may be specified for both the source and sink mesh object. For example the x-
coordinate field in the source mesh object (xic) may be placed in the y-coordinate field of
the sink mesh object. Attribute values will be copied from the source mesh object to the
sink mesh object. The user is warned that these values might not make sense in their
new context.

The second form of this command is included for historic reasons: it duplicates points
within a mesh object including all the attributes of the points. Also note that if no sink
points or sink stride are specified, then the copied points are placed at the end of the data
arrays (see third FORMAT) otherwise the copied points are written over the existing
points starting at the 1st sink point. Note also that the first form of the command gives the
arguments sink first then source whereas the second for give the source then the sink.

FORMAT:

34

copypts/si nk_cno/sour ce_cno/lst _si nk_poi nt/si nk_stride/
1st _source_poi nt/l ast _sour ce_poi nt /source_stride
[sink_attribute/source attribute

copypts/lst _source_poi nt/l ast _source_poi nt /source_stri de/
1st _sink_point/sink_stride/

copypts /1st _poi nt/l ast _poi nt/stri de/

EXAMPLES:

copypts/3dmesh/2dmesh /

Copy all points in 2dmesh to the end of the 3dmesh point list.

copypts/3dmesh/2dmesh/0,0/pset,get,mypoints/

Copy the point set named mypoints from 2dmesh to the end of 3dmesh point list.

copypts/3dmesh/2dmesh/100,4/pset,get,mypoints/boron/arsenic/

Copy the arsenic field from the point set named mypoints from 2dmesh replacing the
boron field at every fourth point beginning at point 100 in 3dmesh.

copypts/pset,get,mypoints/0,0/

Duplicate the point set named mypoints from the current mesh object and place the
duplicated points at the end of the point list.

copypts///0,0/pset,get,mypoints/

Duplicate the point set named mypoints from the current mesh object and place the
duplicated points at the end of the point list. Same effect as the example directly
above. The current mesh object is used since the fields are blank on the command
line

COORDSYS

This routine defines a local coordinate system to be in effect until another coordinate
system is defined or the normal coordinate system is reset. The new coordinate system is
defined by specifying an origin, a point on the new x-z plane and a point on the new z-
axis. these points are specified in the normal coordinate system. the options available in

i opt are:

define define a new local coordinate system

normal return to the normal coordinate system

save save the current coordinate system for recall

restore recall the last saved coordinate system
FORMAT:

35

coordsys/i opt /x0, y0, z0/ xx, xy, xz/ zx, zy, zz/

where x0, y0, z0 is the location of the new origin, xX, Xy, Xz is a point on the new x-z
plane and zx, zy, zz is a point on the new z-axis. These points are defined with the
normal coordinate system, and used only with the def i ne option.

DOPING

Create doping profile for the grid.
A constant profile is invariant over the specified region with value xcon.
A gaussian profile contains a bounding box (x1, y1, z1) to (x2, y2, z2) where the peak
concentration will be. z1=z2 in 2D. The doping varies according to the gaussian
distribution:

doping = concentration * exp(-(L/std_dev)**2)
where L is the effective distance and can be represented as:

L = sgrt(dy**2 + (1/lateral_diffusion)*(dx**2 + dz**2))

where
dy = y-y1 (or y2 for that matter)
dx = X-X1 if X < x1 < x2

= 0 ifxl<x<x2
= X-X2 if x1 < x2 <X
dz similar to dx.

The table option reads in doping data that has been read into the mesh object,
cno_t abl e_nane, asthe attribute, att _tabl e _name from a DATEX2.1 format file by a
previously issued read/datex command. The fields cno_geonetry and
t abl e_geonet ry give the mapping from the domain on which the doping field was input
to the active mesh object domain. The values of these fields may be xy, yz, yx, xz, zx, zy
for 2-D geometries and xyz, xzy, yxz, yzx, zxy, zyx for 3-D geometries.
In all cases, fi el d specifies the name of a defined attribute field in the active mesh
object.

FORMAT:
doping/constant/fi el d/ set|add|sub/i first,ilast,istride/xcon
doping/gaussian/fi el d/ set|ladd|sub/i first,ilast,istride/xyz]|rtz|rtp/
x1,y1l,z1/x2,y2,z2/ | ateral _diffusion/concentration/std_dev/
doping/table/fi el d/ set|add|sub/ifirst,ilast,istride/cno_table_ name/
att _tabl e _nane/ linear|loglasinh/cno_geonet ry/ t abl e_geonetry/
EXAMPLE:

36

doping/constant/ri c/set/pset,get,Si | i con/-1. Oe+15/

doping/gaussian/ri c/add/pset,get,Si | i con/xyz/
0.0,0.08,0.0/0.6,0.08,0.0/0.5/5. 0e+18/ 0. 225/

doping/table/pi c/set/1, 0, O/cnol/pi cllinear/xyz/xyz/

doping/table/Sat ur at i on /set/1, 0, O/cno_cour se/Sat ur at i on/
linear/zx/yx/

DUMP

This command produces an output file from a Mesh Cbj ect . If the option is x3d, a restart
dump is made a subsequent read/x3d will restart the code at the state that the dump was
taken.

FORMAT:

dumpl/file_type/file_name/[cmo_name]/

valid file_types are: x3d, gmv, avs, chad, fehm, and datex
EXAMPLE:

dump/gmv/gnv. out / 3dmesh/

dump/x3d/x3d. out /

EDIT

Prints an edit of various quantities based on the value of the option argument, the point
limits, and/or a material specification. i opt specifies what to print as follows:
no value for i opt --edit of sums, averages, and extrema of position coordinates
(x,y,2), and of mesh object attribute fields
two--gives same information as the default, but only for the two points specified.
parts--gives a list of materials types, their names, count and sequence.
points--lists up to 4 cell-center array values for a set of points. Possible array values
are: xic,yic,zic,or mesh object attribute name

FORMAT:
edit/iopt /ifirst,ilast,istride/ material _#_or_name/
edit/angular/ifirst,ilast,istride/material _#_or_nanme/xcenycen,zcen/
edit/radial ifirst,ilast,istride/material _# or_nane/xcenycen,zcen/

37

edit/ pointsfifirst,ilast,istride/material _# or nanelarrayl,array?2,

array3,array4/
EXAMPLE:

edit/ parts/
edit/
edit/points/pset,get,sone+poi nt s/Si | i con/xi c, yi c, zi c/

ELTSET

This command creates eltsets or element sets with membership criteria:
1. itetclr =, >, < value or other element attribute (added by cmo_addatt)
2. inclusive pset membership - all elements any of whose nodes is in pset
3. exclusive pset membership - all elements all of whose nodes are in pset
4. union, intersection, not, delete other eltsets
5. region or mregion membership
FORMAT:
eltset/eset_name/element_attribute_name/=|* |<|>|£|} /value/
eltset/eset_name/union|inter|not|delete/eset_list/
eltset/eset_name/inclusive|exclusive/pset/get/pset_name/
eltset/eset_name/region|mregion/region_name|mregion_name/
EXAMPLE:
eltset/el enent _set 1/itetclr/=/4
eltset/el ement _set 2/inclusive/pset/get/poi nt _set 1/
eltset/el ement _set 3/region/upper _regi on/

EXTRACT

This command produces a 2D mesh object from a 3D mesh object. A material interface, a
plane or an iso-surface may be extracted. A plane may be defined by three points in the
plane, by a vector normal to the plane, by three points on the axes of the space, or by the
coefficients of the plane equation ax+by+cz=d. An isosurface is defined by the value of
the surface and the mesh object field to test for this value. An interface is defined by the
material(s) bounding the interface. regi onl, [regi on2] are the material numbers or
the material region names whose interface is to be extracted. Use -al | - to extract from
all interfaces. All variations of the command can be limited by the usual pset syntax. The
output 2D mesh object is cnoout, the input 3D mesh objects is cnoi n.

The output MO will be oriented such that the outward normal of the plane that defines the
surface will point in the same direction as the normals for the triangles in the output MO. If

38

the command extracts on an isosurface, the output MO will be oriented such that the
normals for the triangles point in the direction of increasing field. If the command extracts
on an interface, the output MO triangles will be oriented the same as the triangles
extracted from regionl of the input MO. In the case of a plane extracted along all or a
portion of a material interface, only those points that lie inside the material (i.e.: away from
the direction of the normal) will be picked up. If the extraction is on a boundary, the
normal to the extraction plane must point out of the material in order for points to be
picked up.

FORMAT:
extract/plane/threepts/x1, y1, z1/ x2,y2,z2/ x3,y3, z3/
ifirst,ilast,istride/cnoout/cnoin

Iptnorm/x1, y1, z1/ xn,yn, zn/ifirst,ilast,istride/cnoout /croin
laxes/xv, yv, zvlifirst,ilast,istride/cnoout/cnoin
labcd/a, b, c,d/ifirst,ilast,istride/cnoout/cnoin

fisosurfivar/val ue/ifirst,ilast,istride/cnmoout/cnoin

fintrface/regionl/ ifirst,ilast,istride/cnoout/cnoin

fintrfac2/r egi onl/region2/ifirst,il ast,istride/cnoout/cnoi n

FIELD

The FIELD Command option manipulates one or more specified fields in the Current
Mesh Object
» For all points in the specified point set, we compose the field value with the specified
conposi tion function. The conposition functions allowed are currently asinh
and log. So, for example, if 'i" is in the point set and asinh is the conposi ti on
functi on, we have the assignment:

field(i) = asinh(field(i)).
» The field/mfedraw command causes a binary dump of the specified fields to two files in
the mfedraw input format. mfedraw is a graphics package for visualizing moving
piecewise linear functions of two variables, such as those originally encountered in
Moving Finite Elements. The files are named 'r oot 1. bi n" and 'r oot 2. bi n' , where 'root’
istheroot file name argument. Because the graphics data are a function of two
variables, you must supply two orthonormal vectors (x1, y1, z1) and (x2, y2, z2) which
specify the graphics coordinate axes. More precisely, given 3D coordinates (x, y, z), the

39

2D graphic coordinates will then be (x*x1+y*yl+z*z1 , x*x2+y*y2+z*z2). So, for
example, the choice:

/x1,yl,z1/x2,y2,z2/ =1/1.,0.,0./0.,1.,0./
causes the 'z' coordinate to be discarded while the 'x' and 'y' coordinates are unchanged.
» The field/scale option scales the field values of the specified points. scal e opti on
can take on the values normalize, multiply, and divide. If normalize is specified, we
multiply all the field values by f act or /(fieldmax-fieldmin), where ‘fieldmax' and ‘fieldmin’
are the maximum and minimum values taken over the point set. This has the effect of
normalizing the field so that the new difference between the maximum and minimum
values is equal to f act or . If multiply is specified, we multiply all the field values in the
point set by f act or. If divide is specified, we divide all the field values in the point set by
factor.
» The field/volavg option, for all the members of the point set and for all specified fields,
replaces the point field values with values that represent the average of the field(s) over
the control volumes associated with the points. The aver agi ng opt i on specifies what
kind of control volume is to be used; the choices are voronoi and median. iterations is
an integer that specifies a repeat count for how many times this procedure is to be
performed on the field(s). The affect of this process is to broaden and smooth the features
of the field(s), similar to the effect of a diffusion process. The voronoi choice, unlike the
median. choice, produces a diffusive effect independent of mesh connectivity. However,
again unlike the median. choice, it requires that the mesh be Delaunay, or incorrect
results will occur.

FORMAT:
fieldlcompose/conposition functionf/ifirst,ilast,istrideffield list/
field/mfedraw/root file name/x1,yl, z1/x2,y2,z2/field |ist/
field/scale /scal e option/factor/ifirst,ilast,istride/ field list/
fieldivolavg/averagi ngoption/iterations/ifirst,ilast,istrideffield list/
EXAMPLE:
field/lcompose/asinh/l, 0, O/pr essur e/
field/scale/normalize/4.0/set , get, r egi onl/bor on/
fieldivolavg/voronoi/4/1, 0, O/bor on/

40

FILTER

Used to filter (delete) points that are too close (default==>t ol er ance=5.0E-06), closer
than the t ol er ance specified by the user, or duplicate points. This command records the
deleted points as dudded out points (itp=21) and places their position at infinity but does
not remove them from the point list. Note that at least one point must be specified in the
point sequence numbers (i first,ilast,istride) in order for this command to work

properly.

FORMAT:
filter/ifirst,ilast,istridel/[tol erance]

FINISH
Terminate processing this set of command and return to the driver routine.

FORMAT:
finish

GENIEE

Generate element connectivity list(jtet) that gives neighbor information. Element
connectivity is maintained by X3D, but can also be g ®at"{ by the user with this
command.

FORMAT:
geniee

HELP
Access help package. help/command will return the command description.
help/code_vari abl e will return the variable definition. help with no arguments will
return a list of commands and variables.

FORMAT:

help/[vari abl e_name| command_nane]
EXAMPLES:

help

41

help/surface
help/ipointi

HEXTOTET

Create a tetrahedral grid from a hexahedral grid or a triangle grid from a quadrilateral
grid. i opt i on determines how the conversion is performed.

ioption =2==> 2 triangles per quad, no new points.

ioption =4 ==> 4triangles per quad, 1 new point per quad.

ioption =5==> 5 tets per hex, no new points.

i option =6 ==> 6 tets pet hex, no new points.

i option =24 ==> 24 tets pet hex, 7 new points(1 + 6 faces).

FORMAT:
hextotet/ i opti on/ cno_t et/ cno_hex/
EXAMPLES:
hextotet/24/cmo_tet/cmo_hex/

INFILE

INPUT

These commands instruct X3D to begin processing commands from a file. The infile
commands may be nested. Only the outermost set of commands should be terminated
with a finish command

FORMAT:
infile/fi | e_name
input/fi | e_name

INTERSECT

Creates a new Mesh Object from the intersection of two existing Mesh Objects. The
existing Mesh Objects have to be topologically 2D and geometrically 3D. The created
Mesh Object will be topologically 1D and geometrically 3D. Node quantities for the new
Mesh Object will be create by interpolation on the corresponding node quantities of the
first input Mesh Object, cno_1 i n.

42

FORMAT:
intersect/cmo_out /cno_1 in/cnmo_2 in

LOG

Turn the batch output file and tty output file off and on. The tty prints to and reads from the
user's screen. The batch file is the output file called out x3dgen. Default is on for both
files.

FORMAT:
log/bat|tty/on|off/

EXAMPLE:
log/tty/off

MERGE

Merge two points together. On return, the first_poi nt is the survivor unless

first_poi nt may not be removed (a corner point for example), then the command
operates as if fi r st _poi nt and second_poi nt have been interchanged. If there is no
confirmation of the merge, one or both of the points may be inactive, or the merge may be
illegal because the points are not neighbors or because this merge is disallowed by the
merge tables. Merging may trigger other merges by the reconnection step that follows the
merge.

FORMAT:

merge/first_poi nt/second_poi nt/
EXAMPLE:

merge/21,22/

MREGION
Define a material region from a set of surfaces by logically combining the surface names
and region names. The operators It, le, gt, and ge are applied to previously defined
surfaces according to the following rules.
It -- if the surface following is a volume then It means inside not including the surface
of the volume. If the surface is a plane or a sheet It means the space on the side of the
plane or sheet opposite to the normal not including the plane or sheet itself.

43

le -- if the surface following is a volume then le means inside including the surface of
the volume. If the surface is a plane or a sheet le means the space on the side of the
plane or sheet opposite to the normal including the plane or sheet itself.
gt -- if the surface following is a volume then gt means outside not including the
surface of the volume. If the surface is a plane or a sheet gt means the space on the
same side of the plane or sheet as the normal not including the plane or sheet itself.
ge -- if the surface following is a volume then ge means outside including the surface
of the volume. If the surface is a plane or a sheet ge means the space on the same
side of the plane or sheet as the normal including the plane or sheet itself.
The operators or, and, and not applied to regions or surfaces mean union, intersection
and complement respectively. The operators or, and, and not applied to relational
operators are the normal logical operators. Parentheses are used for nesting. Spaces
are required as delimiters to separate operators and operands. Internal interfaces should
be excluded when defining material regions. (i.e. use It and gt). External boundaries
should be included when defining material regions. If a material regions consists of more
than one region and the regions touch (i.e. share a region interface), then the region
interface is not a material interface -- all the points on the region interface are interior to
the material region. In this case use le or ge to include these region interface points in the
material region as interior points.
FORMAT:
mregion/mat eri al _regi on_nane/ regi on definition
EXAMPLES.:
mregion/ matl/ le box1 and (It spherel and (It planel or gt plane2))/
mregion/ mat2/ regiona or regionb /

OFFSETSURF

Offsets triangulated surfaces in the direction of the surface outward normal, i.e., normal
surface motion. For each node a 'synthetic’ unit outward normal N is computed based on
the weighted average angle of the normals of the triangles shared by that node. ol d_cno
is the surface to be used in generating the offset surface. new_cno is the name of the
new surface.

To add the nodes in the new surface to the main mesh object use the copypts command.
To add the new surface to the main mesh object use a surface command with new_cno
as the sheet name (e.g. surface/s2d/bndy_t ype/sheet/new_cno/).

44

di st is given in user coordinates (i.e. whatever units the ol d_cno mesh object was
defined in.)
The new node coordinates, R_new, are computed using the formula:

R new = Rold + dist * N node

FORMAT:
offsetsurf/new _cno/ol d_cno/di st

PSTATUS

Saves, removes, retrieves, or replaces a specified set of points, usually the last set of
points defined by a generator command or the set of points defined by
ifirst,ilast,istride. Note that point sets must be specified in sequence in order for
this command to work properly.

FORMAT:
pstatus (Returns current point status counters)
pstatus /save/nane/ifirst,ilast,istride/
(Saves the point status numbers, i first,ilast,istride under nane)
pstatus /store/nane/ifirst,ilast,istride/
(Overwrites what was in name withi first,ilast,istride
pstatus /delete/nane (Deletes values from nane)
pstatus /get/name (Retrieves values from nane)

PSET

Give a hame to a selected set of points.

union, inter and not are logical operations on previously defined psets.

list lists all psets

delete deletes a previously defined pset

zq forms a pset from all pointsini first,ilast,istride which have value fl ag for
the attribute poi nt fl ag.

geom forms a pset from all points inside the box whose corners are xI , yl , zI and

XU, yu, zu relative to the geometry center at xc, yc, zc.

FORMAT:

pset/pset nane/
seqfifirst,ilast,istride

45

unionljinter|not|delete/pset 1[/ pset 2/ . ../ pset n]
list
zq/point flagf/ifirst,ilast,istride/flag
region/regi on nanef/ifirst,ilast,istride
geom/xyzfifirst,ilast,istridel/xl,yl,zl/xu,yu, zu/ xc, yc, zc
EXAMPLE:
pset/apset /seq/l, 0, 0/ (give all points the name apset)
pset/apset /seq/0, 0, 0/ (give the last defined points the name apset)
pset/apset /union/pset 1, pset 2, pset 3/ (combine psets)
pset/list/ (list all psets)
pset/apset /zq/imd/1, 0, O/ai r/ (give all points in material region air the name apset)

QUADXY
Define an arbitrary, logical quad of points in 2D(xy) space. nx and ny specify the number
of points in the x and y directions. The four corners of the quad are then listed in counter
clockwise order (the normal to the quad points is defined using the right hand rule and
the order of the points).

FORMAT:
quadxy/nx ,ny Ix1,y1,z1/x2,y2,22/x3,y3,z23/x4,y4,z4/

QUADXYZ
Define an arbitrary, logical hexahedron of points in 3D(xyz) space. nx, ny and nz
specify the number of points in the x and y and z directions. The eight corners of the hex
are then listed as two sets of quads, each set of four nodes is given in counter clockwise
order . Points 1 to 4 specify one face of the hex, points 5 to 8 the corresponding face
opposite (point 5 is logically behind point 1, point 6 behind point 2 and so on.)

FORMAT:

quadxyz/nx ,ny,nz/x1y1,z1/x2,y2,22/x3,y3,23/x4,y4,24/x5,y5,25/x6,y6,26/x7,y7,27
/x8,y8,28/

46

READ

This command reads in data into the active Mesh (bj ect, replacing whatever data might
have been previously contained in the active Mesh Qbj ect . If the option is x3d the code
reads in a restart dump. The avs option includes the choice of reading in nodes,
elements and attributes by giving flags values of 1 (read) or O (skip) for the categories:
node_ flag, element_flag and attribute_flag. This option requires that the mesh object
name be specified.

FORMAT:
read/avs|dcm|datex|x3d/fi | e_nane
read/avs/fi |l e_nane/cno_nane/node_ fl ag/el ement _flag/attri bute fl ag/
read/x3d/f i | e_nane/[dunp_nane/r egi on_nane/]
read/ngpltet|hex|quad|tri/fi | e_nane/

EXAMPLE:
read/x3d/nyfil e

RECON

This command flips connections in the mesh to get restore the Delaunay criterion. The
default is to add points on the boundaries if needed (yes). The option no specifies that no
points are to be added on the boundaries.

FORMAT:
recon/[yes|no/]

REFINE

The refine command is used to create more elements when a criterion is specified.
These criteria are defined in the Grid Refinement and Derefinement Section which
follows.
The choice to refine is based on one of the following refine_criterion:
junction will refine object where field = crosses x refine
constant will refine object where field > xr ef i ne
delta will refine object where D field > xr ef i ne

47

lambda will refine object where A (field) < xr ef i ne

maxsize will refine object where object > xrefi ne
maxsize refers to volume for tets, area for face, length for edges

minsize will derefine object where object < xr ef i ne, (not implemented)

aspect will refine where aspect ratio < xrefi ne

addpts will refine explicitly by adding in a set of nodes
The r ef i ne_t ype specifies what object will be refined and how that object will be
refined:

tet will refine elements by placing a point in the center of the element.

face will refine facets by placing a point in the center of the facet.

edge will refine edges by placing a point on the midpoint of the edge.

faceedge will refine facets by refining all edges of the facet.

tetedge will refine elements by refining all edges of the element.
The fi el d must refer to a previously defined attribute of the current Mesh Qbj ect .
The i nt er pol ati on specifies how to interpolate the field to give field values to the new
nodes created. The implemented values are.

linear

log

asinh
The i ncl usi on_f | ag specifies if refinement is an inclusive or an exclusive operation. If
for example, an edge refinement is specified restricted to a pset, then an edge is eligible
for refinement if either or both of the end points belong to the pset if the i ncl usi on_f I ag
is settoinclusive. Ifthei ncl usi on_fl ag is exclusive then both end points must be in
the pset. The implemented values are.

inclusive

exclusive

FORMAT:

refine/refine_criterion/field/interpolation/refine_type

fifirst,ilast,istride /xrefine/inclusion flag
EXAMPLES:

refine/maxsizel/lledge/pset,get,sonet hi ng/.25/

refine/constant/concent r at i on/log/edge/l, 0, 0/25. /inclusive

48

refine/addpts//itet/pset,get,newpoi nt s/

Grid Refinement and Derefinement Criteria

The Refine command for the grid generation code X3D uses various criteria to tag grid
elements for refinement or derefinement. When utilizing unstructured grids generated by
X3D for applications such as solution of partial differential equations (PDE) for physical
systems, it is desirable to modify the grid in order to optimize it for the particular problem
based on several principles. The goal is to produce a better solution by creating better
grid elements in various regions of the domain of the PDE's. This can involve physical
criteria such as choosing smaller elements where physical variables are rapidly changing
or larger elements where the variables are relatively constant in order not to waste
computational effort. Grid elements can also be chosen on various geometric criteria
related to their shape such as different formulations of an aspect ratio. In time dependent
problems, it may be necessary to refine and derefine the grid after each time step in order
to follow various changing phenomena such as moving concentration fronts, shock
waves, or advancing oxide layers. These factors make mesh refinement crucial to the
practical solution of physical modeling problems. We therefore will detail several
algorithms that are currently implemented for identifying which grid elements should be
refined or derefined based on geometric and physical criteria. New algorithms will be
added to this list and the current ones modified as we obtain feed back from users.

49

Grid Refinement and Derefinement Criteria - Algorithms

|. Edges: Each edge is tested separately to see if it should be tagged for refinement or
derefinement.

Definition:
c = ausersupplied tolerance
f(i) = value of the field variable f at node i
l = length of the edge

For the edge between nodes 1 and 2, we have
14— ¢ —P 2
[o
o(1) o(2)

Criteria:
1) Junction: Refine if the edge’s field values straddle .

Tag for refinement if

o(1)>x and ¢(2) <x

or

o(1)<x and §(2)>x
example: For c =0, refine if f changes sign across the edge.
2) Constant: Refine if the edge’s field values exceed ¥.

Tag for refinement if

o) >x or #(2)>x
3) Maxsize: Refine if the edge length exceeds ¥.

Tagif £ >y

4) Minisize: Derefine if the edge length is smaller than c.
Tagif £ <y

5) Delta: Refine if the magnitude of the difference of the field values at the edge ends
exceeds ¥.

Tag if [p(1)- ¢(2)] > x

6) Lambda Refine: Refine if | /DX <c. Where DX is a scale length (here taken to be /)
and | is given below.

50

where C_ is the location of the edge center.

= 1 19()- o(2)
|N¢|_ /
pxl= kW)
219(1)- 9(2)

Generally | /DX is a quality measure of the discretization. A larger value of | /DX usually
indicates a better grid discretization. There are some special cases however. If one of the
field values ¢ is zero as could happen on a boundary, then | /DX = 1/2 always. Another
special case would be for ¢(1) = ¢(2) then | /DX is divergent but the algorithm uses a small
number e= 1" 10-6 added to the denominator to prevent this to give a large but finite
value of | /DX thus indicating a good discretization.

7) Lambda Derefine: As above for Lambda Refine except tag for derefinement if

Il. Faces: Each face is tested separately for refinement or derefinement. For the
tetrahedral face defined by nodes 1, 2, and 3, we have

51

Criteria:
1) Junction:

2) Constant:

3) Maxsize:

4) Minisize:

s (3

f(2
0 2()
where A is the area of the face.

Refine if any of the faces’ field values straddle c.
Tag for refinement if
o(1)>x and ¢(2), #(3) <x

or
0(2)>x and ¢(1), #(3) <x

or
63)>x and ¢(1), ¢(2) <x
or all of the above with > and < interchanged.
example: For c =0, refine iff changes sign between any of the three nodes.
Refine if any of the faces’ field values exceed c.
Tag for refinement if
®1)>x or 2 >x% or ¢(3)>x
Refine if the face area exceeds c.
TagifA>c
Derefine if the face area is less than c.
TagifA<c

5) Aspect Ratio: Refine if the face’s aspect ratio is less than c. The aspect ratio (AR) is

defined as the ratio of the radius of the inscribed circle of the triangular face
to the radius of the circumscribed circle. We renormalize this ratio of
multiplying by 2 so that the ratio equals one for an equilateral triangle.

AR = Z% where R¢° radius of inscribed circle
c

Rc © radius of circumscribed circle

AR is never greater than one.
TagifAR<cC

52

Generally the smaller AR is the more elongated the face is.
6) Lambda Refine: Refine if | /DX <c. Where DX is taken to be the radius of the
circumscribed circle R¢ of the triangular face

l0(X)| = 310 @) + 0 (2) + 0 (3

where X is the centroid of the triangular face, and we have assumed a linear
interpolation of ¢.

|Rl¢| is evaluated on the face by a suitable approximation involving a linear
interpolation of ¢ and N¢ @k¢yp(X) d? where the line integral is around the edge

of the face.

7) Lambda Derefine: As above for Lambda Refine except tag for derefinement if g= >y

53

lll. Tets: Each tetrahedron is tested separately for refinement or derefinement

f(4)
4

3 f(3)
\%
f(2
, @)
1101
where V is the volume of the tetrahedron.
Criteria:
1) Junction: Refine if any of the tet’s field values straddle .

example: For y = 0 refine if ¢ changes sign between any of the four nodes.
2) Constant: Refine if any of the tet’s field values exceed y.
Tag for refinement if
o1)>x or ¢2)>x or¢(3)>yx or(4) >y
3) Maxsize: Refine if the tet volume exceeds ¥.
TagifV>y
4) Minisize: Derefine if the tet volume is less than y.
TagifV<y
5) Aspect Ratio: Refine if the tet’s aspect ratio is less than c. For the tet the aspect ratio
(AR) is deferred as the ratio of the radius of the inscribed sphere of the tet to
the radius of the circumscribed sphere. We renormalize this ratio by
multiplying by three so that the ratio equals one for a regular tetrahedron
(composed of equilateral triangular faces).

AR = 3% where Rg° radius of inscribed sphere

Rs © radius of circumscribed sphere
AR is never greater than one.
Tagif AR <c.
Generally the smaller AR is, the more elongated the tet is.
6) Lambda Refine: Refine if | /DX <c. Where DX is taken to be the radius of the

circumscribed sphere Rg of the tet.

54

lo(X)|=410(1)+ ¢ (2) +d(3) + ¢ (4)

where X is the centroid of the tet, and we have assumed linear interpolations
of ¢. |f§|¢| is evaluated for the tet by a suitable approximation involving a linear

interpolation of ¢ and ﬁl(p @é@)()?) ds where the surface integral is over the

surface of the tet.

7) Lambda Derefine: As above for Lambda Refine except tag for derefinement if LS >C

IV. Face Edges: Same algorithms of the Faces category except all edges of the face are
tagged for refinement or derefinement if the condition is met for the face.

V. Tet Edges: Same algorithms of the tet category except all edges of the tet are tagged
for refinement or derefinement if the condition is met for the tet.

55

REGION

Define a geometric region from the set of surfaces by logically combining the surface
names. The operators It, le, gt, and ge are applied to previously defined surfaces
according to the following rules.
It -- if the surface following is a volume then It means inside not including the surface
of the volume. If the surface is a plane or a sheet It means the space on the side of the
plane or sheet opposite to the normal not including the plane or sheet itself.
le -- if the surface following is a volume then le means inside including the surface of
the volume. If the surface is a plane or a sheet le means the space on the side of the
plane or sheet opposite to the normal including the plane or sheet itself.
gt -- if the surface following is a volume then gt means outside not including the
surface of the volume. If the surface is a plane or a sheet gt means the space on the
same side of the plane or sheet as the normal not including the plane or sheet itself.
ge -- if the surface following is a volume then ge means outside including the surface
of the volume. If the surface is a plane or a sheet ge means the space on the same
side of the plane or sheet as the normal including the plane or sheet itself.
The operators or, and, and not applied to surfaces mean union, intersection and
complement respectively. The operators or, and, and not applied to relational operators
are the normal logical operators. The parentheses operators, (and), are used for nesting.
Spaces are required as delimiters to separate all operators and operands. Internal
interfaces should be included in exactly one region.

FORMAT:
region/r egi on_nane/ regi on definition
EXAMPLES:
region/regl/le spherel and (It planel or gt plane2)
region/reg2/le spherel and (ge planel and le plane2)

REGNPTS

Generates points in a region previously defined by the region command. The points are
generated by shooting rays through a user specified set of points from an origin point,
line, or plane and finding the intersection of each ray with the surfaces that define the
region. The point distribution is determined by the data in pt di st. If pt di st is integer,
then that many points are evenly distributed along the ray in the region. If pt di st is real,

56

then points are distributed at that distance along the ray within the region. The variables
irratioandrrz determine ratio zoning when pt di st is an integer. Ratio zoning is on
whenirratiois 1, then the distribution is adjusted by the value forrrz. Whenirratio
is 2, the points are distributed by equal volumes depending on the geometry. When
irratiois 3, ratio zoning is calculated on the longest ray then this length distribution is
applied to all the rays. See the description of the command surface for a discussion of
point distributions with respect to sheet surfaces.

FORMAT:

regnpts/regi on nane/ptdist/ifirst,ilast,istride/geont
ray origin/irratio,rrz

regnpts/r egi on nane/ pt di st /pset,get,set nane/ geomiray origin
[irratio,rrz

Whereifirst,ilast,istride orpset,get,set nane define the set of points to shoot

rays through.

EXAMPLES:

regnpts/regi on name/ ptdist/ifirst,ilast,istridelxyz
Ix1,y1l,z1/x2,y2,z2/ x3,y3,z3/irratio,rrz/

Where points 1, 2, 3 define the plane to shoot rays from that are normal to the plane.

regnpts/regi on nane/ ptdist/ifirst,ilast,istride/
rtz/ x1,y1,z1/ x2,y2,z2/irratio, rrz/

Where points 1, 2, define the line from which to shoot perpendicular rays

regnpts/regi on nane/ ptdist/ifirst,ilast,istride/
rtp/ xcen, ycen, zcen/irratio, rrz

Where xcen, ycen, zcen define a point from which to shoot rays .

regnpts/regi on nane/ptdist/ifirst,ilast,istridel/points/
iffirst,iflast,ifstride/

Where i ffirst,iflast,ifstride define a set of points from which to shoot rays

RESETPTS

Reset node values. If iflag is parent (default) the parent child flags are reset. All child
points are eliminated and the connectivity list is corrected to reference only the parent
points. If iflag is itp the itpl array is reset to indicate whether each node is in the interior
(0), on an interior interface (2), on a reflected boundary (10), or on a reflected interface
boundry (12) . Resetting itp would be used if nodes were removed (such as with rmmat)
leaving new boundaries

57

FORMAT:
resetpts/ifl ag

EXAMPLES:
resetpts
resetpts/parent
resetpts/itp

RM

Removes any points that are within the specified point range and specified volume of
space. This is done in Cartesian (X, Y, Z), cylindrical (R, THETA, Z), or spherical (R,
THETA, PHI) coordinates. It should be noted that in cylindrical coordinates, t het a is the
angle in the XY- plane with respect to the x-axis, while in spherical coordinates t het a is
the angle with respect to the Z-axis and phi is the angle in the XY-plane with respect to
the X-axis. In cylindrical coordinates the cylinder always lines up along the z axis; use the
coordsys command before issuing the rm command if the points to be removed are not
aligned with the z-axis; then issue a final coordsys command to return to normal. Also
note that the points that are removed become dudded out (point type set to 21) and are
not removed from the data array.
The other options are:

geonetry -- xyz,rtz, rtp

ifirst,ilast,istride -- pointrange to search

xmn, ymn, zmn -- minimums of geonet ry type coordinates

xmax, ymax, zmax -- maximums of geomnet ry type coordinates

xcen, ycen, zcen -- center of removal space for geonetry

xscal e, yscale, zscale -- scaling factors for geonetry limits

FORMAT:
rm/geonetry fifirst,ilast,istride/xmn,ymn,zm n/Xxmax, ynmax, znmax/
xcen, ycen, zcen/[xscal e, yscal e, zscal €]
EXAMPLE:
rm/xyz/0,0,0/2.,2.,2./14.,4.,4./0.,0.,0./
rm/rtz/0, 0, 0/0.,0.,0./1.,360.,10./0.,0.,0./

58

RMMAT
Removes all points of a specified material number. This command duds out the points
(sets ipt=21) but doesn't remove them from the data array. Use edit/parts to find the
correct material numbers. To actually remove the points see the rmpoints command.

FORMAT:
rmmat / material number/

RMPOINT
Removes a specified list of points (i first, il ast,istride) from a point distribution.
The first format sets the point type flag [itp=ifitpdud (21)] to indicate that the set of points
should be removed, but does not actually remove the points. The second format,
compress, compresses and material-wise resequences all appropriately flagged points.
If iflag is inclusive, any element containing a removed point is removed. IF iflag is
exclusive (default), any element containing a retained point is retained.

FORMAT:
rmpoint/ifirst,ilast,istride/iflag
rmpoint/compress/
rmpoint/zero_volume/t hr eshol d (Elements whose volumes are less than or equal to

threshold will be removed.)

RMREGION

Removes points that lie within the specified region.

FORMAT:
rmregion/r egi on_narme/

RMSPHERE
Removes a sphere of points from a point distribution.

FORMAT:
rmsphere/i nner _r adi us/ out er _radi us/ xcen, ycen, zcen/

59

RMSURF
Removes points that lie in, on or in and on the specified surface. i oper can be one of the
following:
It - only points in the surface are removed
eq - only points on the surface are removed
le - all points in or on the surface are removed

FORMAT:
rmsurf/r egi on_nane/i oper

ROTATELN
Rotates a point distribution (specified by i first,ilast,istride)aboutaline. The
copy option allows the user to make a copy of the original points as well as the rotated
points, while nocopy just keeps the rotated points themselves. The line of rotation
defined by x1 through z2 needs to be defined such that the endpoints extend beyond the
point distribution being rotated. t het a (in degrees) is the angle of rotation whose positive
direction is determined by the right-hand-rule, that is, if the thumb of your right hand points
in the direction of the line (1 to 2), then your fingers will curl in the direction of rotation.
xcen, ycen, zcen is the point where the line can be shifted to before rotation takes place.

FORMAT:
rotateln ifirst,ilast,istride/[no]copy/x1,yl,z1/x2,y2,z2/thetal

xcen, ycen, zcen/

ROTATEPT
Rotates a point distribution (defined by i first,il ast,i stri de) about a point
xcen, ycen, zcen. phi (in degrees) is the angle of rotation of the XY plane around the Z-
axis, where positive phi is measured from the positive x-axis toward the positive y-axis.
t het a (in degrees) is the angle of rotation toward the negative z-axis. The (no) copy
options are as described in the rotateln command.

FORMAT:
rotatept ifirst,ilast,istride/[no]copy/xcen,ycen, zcen/thetal phi

60

This command adds points to the mesh. It can distribute points evenly or according to a
ratio zoning method.
xyz specifies Cartesian coordinates.
rtz specifies cylindrical coordinates.
rtp specifies spherical coordinates.
When using the rtz or rtp coordinate systems the center is at (0, 0, 0) . Use atrans
command to move the center. For the rtz command, minimum and maximum coordinates
are the triplets: radius from the cylinder's axis, angle in the xy-plane measured from the x-
axis and height along the z-axis. For the rtp command minimum and maximum
coordinates are the triplets: radius from the center of the sphere axis, angle in the zy-
plane measured from the positive z-axis and the angle in the xy-plane measured from the
positive x-axis (see lll.a.11). Note that the rtz always results in a (partial) cylinder of points
centered around the z axis. Use the rotateln command to orient the cylinder. For
example, to center the cylinder around the y axis, specify the x axis as the line of rotation
in the rotateln command.
ni, nj , nk number of points to be created in each direction.
Xm n,ymn, zm n minimums for coordinates.
Xmax, ymax, zmax maximums for coordinates.
iiz,ijz,ikz if=0then mins and maxs are used as cell centers
if =1 then mins and maxs are used as cell vertices

iirat,ijrat,ikrat ratiozoning switches (0=0ff,1=0n)
Xrz,yrz,zrz ratio zoning value - distance is multiplied by this value for each

subsequent point.

FORMAT:

rz/xyz|rtz|rtp/ni , nj , nk/ xm n, ym n, zm n/ xmax, ymax, zmax/
iiz,ijz,ikz/[iirat,ijrat,ikrat/xrz,yrz,zrzl]

EXAMPLES:

rz/xyz/5,3,10/0.,2.,0./1.,.6,2./1,1,1/

This results in a set of 150 points, five across from x=0. to x=5., 3 deep from y=2. to y=6.
and 10 high from z=0. to z=2.

rz/rtz/4,6,11/0.,0.,0./3.,360.,10./1,0,1/

This results in 264 points arranged around the z- axis. There are 3 rings of points at
distances r=1., r=2. and r=3. from the z-axis. There are 11 sets of these three rings of
points and heights z=0., z=1., z=2.,...,z=10. In each ring there are 6 points where each

61

pair of points is separated by 60°; note that ijz=0 requests that points be placed at cell
centers, hence the first point will be at 30° not at 0°. There will be 6 points identical points
at 11 intervals along the z-axis at heights z=0., z=1., z=2.,...z=10. Filter should be used to
remove these duplicate points.

RZBRICK

Builds a brick mesh and generates a nearest neighbor connectivity matrix. This command
is similar to the rz command format except here we have symmetry flags to input. A
second format specifies that a mesh be created and connected.
xyz specifies Cartesian coordinates.
rtz specifies cylindrical coordinates.
rtp specifies spherical coordinates.
ni , nj , nk number of points to be created in each direction.
Xm n, ym n, zm n minimums for coordinates.
xmax, ymax, zmax maximums for coordinates.
iiz,ijz,ikz if=0then mins and maxs are used as cell centers
if =1 then mins and maxs are used as cell vertices
iirat,ijrat,ikrat ratiozoning switches (0=off,1=0n)
Xrz,yrz,zrz ratio zoning value - distance is multiplied by the value for each
subsequent point.
nane name of pstatus containing starting point number

i symjsym ksym

FORMAT:
rzbrick/xyz|rtz|rtp/ni , nj , nk/ xm n, ym n, zm n/ xmax, ymax, zmax/
iiz,ijz,ikz/[iirat,ijrat,ikrat/xrz,yrz,zrz/isymjsymksynj
or
rzbrick/xyz|rtz|rtp/ni , nj , nk/ pstatus,get,nane/ connect/
Use this option with QUADXYZ to connect logically rectangular grids.

RZS

Builds a sphere by generating coordinates of points and also modifies zoning by ratio-
zoning point distributions. See the rz command for more details. The i t ype flag defines
what type of sphere will be generated.

62

i t ype=1 generates a sphere by gridding the faces of a cube and then projecting the
vertices onto a sphere.
i t ype=2 generates a sphere by subdividing an icosahedron placed on the surface of a
sphere. itype= 1 or 2 distributes points only, call search to generate connectivity
information.
nr is the number of radii
npt is the number of points total in the sphere
i t ype=8 generates a hexahedral icosahedron grid. This option distributes points and
generated the grid connectivity data structures.
xi rad, xorad are the inner and outer radii of the sphere. For itype=8 reverse inner and
outer radii.
xcen, ycen, zcen are the coordinates of the center of the sphere
iz if =0 then mins and maxs are used as cell centers

if =1 then mins and maxs are used as cell vertices
i rat isratio zoning switch (0=off,1=0n)
r z is ratio zoning value - distance is multiplied by the value for each subsequent point.

FORMAT:
rzsli type/nr, npt, xi rad, xor ad/ xcen, ycen, zcen/i z/irat,rz/

FORMAT:
rzs/8/5/162/1.0,0.5/0.,0.,0./1,0,0.0/
rzs/ 2/5/162/0.5,1.0/0.,0.,0./1,0,0.0/

SCALE

Scale a point distribution specified by i first,ilast,istride according to the scale
factorsi scal e, j scal e, and kscal e. The lettersi, j, and k in the scale factors
correspond to coordinates specified by one of the geonetry types [xyz (Cartesian), rtz
(cylindrical), rtp (spherical)]. For example, if geonmetry = rtz theniscale = rscal e,
jscale = tscale, and kscal e = zscal e. Ifthe scal i ng option is relative then the
scaling factors are unitless multipliers with reference to some geometric center

(xcen, ycen, zcen). Ifthe scal i ng option is absolute then the scaling factors are
consistent units added on to the existing coordinates

FORMAT:

63

scalefifirst,ilast,istridelabsol utelrelative/xyz|rtz|rtp/
i scal e, j scal e, kscal e/ xcen, ycen, zcen

SEARCH

This is the main command for generating the connectivity list.

i srchopt -

0 => Set up the mesh for specified points. If points are not specified, set up the mesh for
the entire problem. Also, remove the enclosing tetrahedron after generating the mesh.
1 => Same as 0 except do not remove tetrahedra associated with the enclosing
tetrahedron.

2 => Add specified points to the existing mesh and remove tetrahedra associated with the
enclosing tetrahedron.

3 => Add specified points to the existing mesh and do not remove tetrahedra associated
with the enclosing tetrahedron.

4 => Just remove tetrahedra associated with the enclosing tetrahedron.

FORMAT:
search/isrchopt/ifirst,ilast,istride/

SETPTS

Sets point types and material regions by calling surfset and regset routines. Generate
constraint table.

FORMAT:
setpts

SETTETS

Set tetrahedra color (material type). Mark interface points; create child points at interior
boundaries. Points on interior

If there are no parameters settets sets the color of all tets based on previous mregion
specification

If there are parameters, tets whose face centroids all lie within the box specified by points
1 and 2 are colored to col or. Col or often represents material type.

FORMAT:
settets

64

settets/col or/ x1,yl, z1/ x2,y2, z2/

SMOOTH

The SMOOTH Command smoothes 2D or 3D mesh objects. Adaptive smoothing (to
values of specified fields) or non-adaptive smoothing is available. In the first form, we
adapt the current mesh object to the specified field of the reference mesh object
(cno_ref). Although the x-y-z values of -cmo- are altered by adaption, cno_r ef should
never change. Hence, to accomplish adaption using one or more fields in the current
mesh object itself, one should let cno_r ef be a copy of the current mesh object. The
user can specify one of two algorithm choices: Minimum Error Gradient Adaption (mega),
or Elliptic Smoothing for Unstructured Grids (esug) The results of adaption of the grid to
the field can be altered by using one or more field commands beforehand to modify the
field of cno_r ef . For example, by increasing the scale of a field using field/scale, the
esug algorithm option of smooth will produce grids with increased numbers of nodes in
the regions where the field experiences relatively large gradients. By volume averaging a
field using field/volavg, smooth will cause a more gentle form of adaption with a better
grading of elements. By composing the values of the field with log or asinh using
field/compose, one can cause smooth to shift nodes to where the logarithm (or
hyperbolic arcsine) of the field has interesting features, rather than where the field itself
has interesting features. In the second form of adaptive smoothing the user supplies a
subroutine call fadpt. In this case the seventh argument to the smooth command is the
keyword user.

Subroutine fadpt(x, y, z, nvec, tine, f)
PURPOSE-
Adaption function for smoothing algorithms. (Replace this code with a user-
supplied function for nontrivial smoothing.) This default function should create a
uniform grid when used with mega type smoothing.
INPUT ARGUMENTS -
X, Y, Z - Input spatial coordinate arrays.
nvec - Length of spatial arrays.
t i me - Current time (for time dependent adaption).
OUTPUT ARGUMENTS -
f - Array of adaption function values.

65

In the third form of the smooth command, we perform non-adaptive smoothing on the
specified point set, using either mega or esug. You can specify an optional cont r ol
value between zero and one. The default (control=0.) results in the standard smoothing
scheme. Increasing control towards 1. causes the scheme to be progressively more
controlled (moving the mesh less), until at control=1, there is no mesh movement
whatsoever. By default, the second argument is POSITION. This results in the positions
of the nodes being changed. set,add,sub are reserved for future implementation of
smoothing using node velocities.

FORMAT:
smooth/position|set|add|sub /megalesug/ifirst,il ast,istridelcno_ref/field/
smooth/position|set|add|sub/megalesug/i first,ilast,istridel/user/
smooth/position|set|add|sub/megalesug/i first,il ast,istridelcontrol/

EXAMPLES:
1. Smooth the positions of all the nodes in the mesh (Here, missing arguments are
supplied default values.)
SMOOTH

2. Smooth all nodes in the mesh, using controlled smoothing with control = 0.5
SMOOTH///1,0,0/0.5

3. Adaptively smooth interior nodes in the mesh using user-supplied FADPT subroutine.

PSET/interior/ZQ/ITP/1,0,0/0
SMOOTH//IPSET,GET,interior/USER

4. Copy 2dmesh to 2dmesh_ref.
Normalize density field to have values of order unity. Adapt 2dmesh to normalized
density field values in 2dmesh_ref.

CMO/COPY/2dmesh_ref/l2dmesh
FIELD/SCALE/NORMALIZE/1.0/1,0,0/density
CMO/SELECT/2dmesh
SMOOTHY///1,0,0/2dmesh_ref/density

66

SURFACE

Defines a boundary surface of the type specified in i bt ype.

I bt ype can be free, intrface, reflect,intrcons or virtual. Use reflect or free for external
boundaries, intrface for interior interfaces, intrcons for constrained interior interfaces.
Use virtual for virtual interfaces.

The surface is defined by i st ype and X1 through Z4.

i stype can be plane, box, parallel(piped), sphere, cylinder, cone, ellipse(oid), tabular
(rotated tabular profile), or sheet.

X1 through Z4 are specified with the surface type in mind.

i sur name is the name of the surface and must be unique for each surface defined by
surface.

FORMAT:
surfacel/i sur nane/i bt ype/i st ype/x1lyl/z1/x2/y2/z2/x3/y3/z3/x4ly4/z4]
surfacel/i sur nane/i bt ype/sheet/cno_nane/

EXAMPLES:
surface/i sur nane/ i bt ype/box/xm n, ym n, zm n/ xmax, ymax, znmax/
surfacel/i sur name/ i bt ypelcone/x1, y1, z1/ x2,y2, z2/ r adi us/
Where point 1 is the vertex and point 2 is the top center of the cone with radius from that
point. A cone is finite but open. To create a closed cone cap the open end with a plane.
surfacelfi sur nanme/ i bt ypelcylinder/x1, y1, z1/ x2,y2, z2/ r adi us/
Where point 1 is the bottom center and point 2 is the top center of the cylinder. Cylinders
are open but finite To create a closed cylinder cap both ends with planes.
surfacelfi sur name/ i bt ypelellipse/x1, y1, z1/ x2,y2,z2/ x3,y3, z3/ar, br, cr/
Where point 1 is the center of the ellipsoid and point 2 is on the a semi-axis (new Xx), point
3 is on the b semi-axis (new y), and ar, br, cr are radii on their respective semi-axes.
surfacelfi sur nanme/ i bt ypelparallel/x1, y1, z1/ x2,y2, z2/ x3,y3, z3/ x4, y4, z4/
Where points 1, 2, 3 are the front left, front right and back left points of the base and point
4 is the upper left point of the front face.
surfaceli sur name/ i bt ypel/plane/x1, y1, z1/ x2,y2, z2/ x3,y3, z3
surfaceli sur name/ i bt ypel/planexyz/x1, y1, z1/ x2,y2, z2/ x3,y3, z3
the direction of the normal to the plane is determined by the order of the points according
to the right hand rule.
surfacel/i sur nane/ i bt ypel/planertz/r adi usl, t het al, z1,
radi us2, t het a2, z2, radi us3, t het a3, z3, xcen, ycen, zcen/

67

surfacel/i surnane/ i bt ypel/planertp/r adi usl, t het al, phi 1,

radi us2, t het a2, phi 2, radi us3,theta3, phi 3, xcen, ycen, zcen/
surfaceli sur nane/ i bt ype/sheet/ cno_nane/

Sheet surfaces may be input by specifying a cno_nane. The Mesh Object must be either

a 2D quad Mesh Object or a 2D triangle Mesh Object.
Inside/outside with respect to sheet surfaces will be determined by the following
algorithm:
» For the point being considered, p, find the nearest sheet triangle and the closest
point, g, to p that lies on that triangle.
« Construct the vector, d, from gtop.

» Construct the outward normal to the triangle, n. The outward normal is
constructed using the right hand rule and the order of the points in the sheet.
Sheets may be specified as quad Mesh Object (i.e. a 2 dimensional array of points
containing the coordinates of the corners of each quad). Either two triangles
(divide each quad in two using point (i,j) and (i+1,j+1)) or four triangles (add a point
in the center of the quad) are generated by each quad. Applying the right hand
rule to the points (i,j), (i+1,j), (i+1,j+1) gives the direction of the normal for all
triangles created from the quad.

e If d «fi <O then the point is inside. If d «f >0 the point is outside. If diien=0,
and if p is on the triangle then p=q and p in on the triangle.

68

e If d*A =0 and p is not on the triangle then p is outside.

pl n
(2 *
q3 p3
p2
pl is outside
p2 is inside
p3 is outside

One implication of this definition is that the concept of shadows cast by open sheets no
longer is valid. Sheets may be considered to extend to the boundary of the geometry.

SAROS
2

3 ‘/\ 9

direction of outward normal

points 1, 5, 3, 6 are outside
points 2, 4, 7, 8 and 9 are inside

surfacel/i sur nane/ i bt ype/sphere/xcen, ycen, zcen/ r adi us/
surfacel/i sur nane/ i bt ype/tabular/ x1, y1, z1/ x2,y2, z2/ geonl
rl, z1

69

r2,z2
r3,z3

rn, zn

end

or
ri,thetal
r2,theta2
r3,theta3

rn, t het an

end

Where point 1 and point 2 define the axis of rotation for the tabular profile with point 1 as
the origin. This is followed by pairs of profile descriptors depending on the value of geom
If geomis set to rz, then the r value is a radius normal to the axis of rotation and z is the
distance along the new axis of rotation. If geom is set to rt then t het a is the angle from
the axis of rotation at point 1 and r is the distance from point 1 along t het a. The first pair
must start on a new line and all lines must contain pairs of data. The last pair of data
must be followed by end.

SURFPTS

Generates points on boundary surfaces previously defined by the surface or region
command. The variable i t ype can be surface orregion and i nane is the name of the
surface or region. The points are generated by shooting rays through a user specified set
of points from an origin point, line or plane and finding the surface intersection of each
ray. The point location for a region is determined by i r egpt and can be on the inside,
outside or both surfaces.

FORMAT:
surfpts/itype/iname/iregpt/ifirst,ilast,istride/geomray_origin
surfpts/i t ype/ i nane/ i r egpt / pset,get,setname/geoniray_origin
Whereifirst,ilast,istride orpset,get,setname define the set of points to shoot
rays through.

SPECIFICALLY FOR ALLOWABLE GEOMETRY TYPES:

70

surfpts/itype/inanme/iregpt/ifirst,ilast,istride/

xyz/x1,yl, z1/ x2,y2, 22/ x3,y3, z3/

Where points 1, 2, 3 define the plane to shoot rays from that are normal to the plane.

surfpts/itype/inanme/iregpt/ifirst,ilast,istride/rtz/x1,yl, z1/x2,y2,2z2]/

Where points 1, 2, define the line to shoot rays from that are perpendicular to the line.

surfpts/itype/inanme/iregpt/ifirst,ilast,istride/rtp/xcen,ycen, zcen/

surfpts/itype/inane/iregpt/ifirst,ilast,istride/points
fiffirst,iflast,ifstride/

Whereifirst,ilast,istride define a set of points to shoot rays from.

TRANS

Translates a selected set of points (i first,ilast,istride)in X,Y,Z space by picking
one specific point (xol d, yol d, zol d) in the set of points and moving it to new
coordinates (xnew, ynew, znew) with a linear translation. This will then cause the
remaining points in the set to be moved by the same translation.

FORMAT:
trans/ifirst,ilast,istride/xold,yold, zol d xnew, ynew, znew
EXAMPLE:
trans/pset,get,nypoi nts/0.,0.,0./2.0,2.0,0./
The points in the pset nypoi nt s will be moved 2 in the positive x direction and 2 in the
positive y direction.

bde)

Set or print node attribute values of a selected set of nodes.

To print, omit the ‘value’ field.

For printing, attributes are grouped as follows:

Groupl: isq,imt,itp (material type and point types)

Group2: Xx,y,z (coordinates)

To print, specify any one of a group and all will be printed.

To set an attribute value, set val ue and all selected nodes will be set to this value.
Attribute added with a cmo/addatt command may also be printed or changed.

FORMAT:
zqfiattribute/ifirst,ilast,istride/value

EXAMPLE:
zq/imt/1,100,2/materiall/
will set all odd numbered points between 1 and 100 to material type ‘material 1’
zq/xic/1,0,0/
will print coordinates of all points

72

IV. Interfacing User Routines to X3D

a. Building an executable and running X3D.
The executable is built by linking a driver routine with the code and utility libraries.
The driver routine must contain a call to i ni t x3d and a call to dot askx3d and must
contain a subroutine called user _sub. A sample driver routine is listed:
program adri vgen

C
HHHHBHEH R R R R R R R R R R R R R R
C
C PURPCSE - X3D dri ver
C
HHHHBHEH R R AR R R R R R R R R R R R
C
inplicit real*8 (a-h, 0-2)
C
call initx3d('generate',' noisy'," '," ")
C
call dotaskx3d('interact',ierror_return)
C
stop
end
C
subroutine user_sub(insgi n, xnmsgi n, cnegi n, nsgt yp, nwds,
X ierrl)
C
HHHHHHEH R R R R R R R R R R R R R R
C
C PURPCSE -
C
C Process user supplied comands
C
C I NPUT ARGUMENTS -
C
C imsgin - integer array of tokens returned by parser
C xmsgin - real array of tokens returned by parser
C cnsgin - character array of tokens returned by parser
C nsgtyp - int array of token types returned by parser
C nwds - nunber of tokens returned by parser
C
C OQUTPUT ARGUMENTS -
C
C lerrl - O for successful conpletion - -1 otherw se
C

HHEHBHEH R R R R R R R R
character*32 cnsgi n(nwds)
i nteger insgi n(nwds), nsgtyp(nwds)

73

i nteger nwds,ierrl,|enc
real *8 xnsgi n(nwds)

C get command | ength
| enc=i charl nf(cnsgin(1))
C set default error return to fail
ierrl=-1
C Insert code here to handl e user coded subroutines
C For exanple
C if(cmsgin(l)(1:1enc).eq. ' ny_cmd') t hen
C call nmy_rtn(insgin, xnmsgin
C * cnsgi n, nsgt yp, nwds, i err1)
C el se
C ierrl=-1
C endi f
C
return
end

Sample build scripts for the supported platform are:
Sun OS and Sun Solaris

f77 -g -0 x3dgen adrivgen.f libx3d.a libutil.a
IBM RISC

f77 -g -0 x3dgen -qgintlog -brenane:.fdate,.fdate_ adrivgen.f
i bx3d.a libutil.a

SGI
f77 -g -Nn10000 -0 x3dgen adrivgen.f [libx3d.a libutil.a

HP
f77 -g +U77 -R8 -0 x3dgen adrivgen.f libx3d.a libutil.a

Once the executable is built, the dictionary file must be installed. This file, x3ddi ct, is
supplied with the libraries. It must either exist in the directory from which X3D will be
run, or an environment variable may be set to give the directory path to its location.
The format of the set env command is:

setenv x3ddict full _directory path _to x3ddict.
To execute, use standard unix file redirection for standard input and output. X3D will
produce two additional files, out x3dgen and | ogx3dgen. These contain detailed
output information and the list of commands respectively. X3D may also be run
interactively in which case the user will be prompted to enter commands from the
workstation.

b. Issuing Commands from a user program.

Any X3D command can be issued by calling the subroutine dot askx3d, for example:
cal | dotaskx3d(' cno/ sel ect/3dnmesh', ierl)

74

will select the Mesh Object named 3dmesh. ierl will be zero if the commands are
executed with no error, non-zero otherwise.
By using the X3D command infile, a series of commands may be executed, for
example

call dotaskx3d('infile/nydeck', ierl)
will execute all the X3D commands that are in the user's file named mydeck. The final
command in the file mydeck should be finish.

C. Writing user commands

The access to user written subroutines is through the X3D subroutine, user _sub. Itis
passed the parsed command input line. The parser breaks up the input line into
tokens and returns to X3D a count of number of tokens, an array containing the token

types, and the tokens themselves. The parameters returned by the parser are:

nwds (number of tokens)

nsgt yp (integer array of token types - 1 for integer, 2 for real, 3 for
character, msgtyp(nwds+1) = -1)

i msgi n (array of integer tokens, e.g. imsgin(i) is the ith token which is an
integer if msgtyp(i)=1)

xmsgi n (array of real tokens)

cnsgi n (array of character tokens)

Null fields are given the integer value 0, real value 0. and character value '-def-". The
parser is written in C, therefore character variables returned will be null terminated on
some platforms. A FORTRAN function is supplied; i char | nf will return the length of
the character string blank or null terminated, ignoring leading blanks
If the user has written a subroutine, my_r out i ne, that responds to the command,
ny_commd, the call from user _sub should look like:

elseif (cnmsgin(l)(1l:lenc).eq. 'ny_comnd')
X call ny_routine(nwds,insgin, xnsgin, cnegi n, nsgtyp.ierrl)
The subroutine ny_routi ne should seti err 1 to zero if the command is processed
successfully and should use the cno interface routines to access the components of
the Mesh (bj ect that it needs, for example:

character*32 cno
pointer (ipiml, inml1l(*))

c get the nane of the current nmesh object
call cno_get nane(cno_nane,ierror)
c get the nunber of nodes and the nmaterial ids

call cno_get _info('nnodes', cno_nane, nnodes, ilen,ityp,ierr)
call crno_get info('iml ,cno_nane,ipiml,ilen,ityp,ierr)

75

The subroutine user _sub is supplied with the driver and is defaulted to print
the error message: 'lllegal command' and return.

d. The following template is an example of using the an existing mesh object and
of creating a new mesh object. The existing mesh object is a 3d object. The
object to be created is a 2d object. It is first necessary to set up the pointer
statements for both the existing and new mesh objects.

C Definitions for incomng (existing) cno
C

pointer (ipintl, im1l)

pointer (ipitpl, itpl)

pointer (ipicrl, icrl)

poi nt er (ipisnl i snl)

i nteger int1(1000000), itpl(1000000),
* i cr1(1000000), isn1(1000000)

poi nter (ipxic, Xic)

poi nter (ipyic, yic)

poi nter (ipzic, zic)

di mensi on xi ¢(1000000), vyic(1000000), zic(1000000)

pointer (ipitetclr, itetclr)

pointer (ipitettyp, itettyp)

pointer (ipitetoff, itetoff)

pointer (ipjtetoff, jtetoff)

pointer (ipitet, itet)

pointer (ipjtet, jtet)

i nteger itetclr(1000000), itettyp(1000000),
* i tetoff(1000000), jtetoff(1000000)

i nteger itet(4,1000000) , jtet(4, 1000000)

C Definitions for cnbo that is to be created

pointer (ipintla, intla)

poi nter (ipitpla, itpla)

poi nter (ipicrla, icrla)

poi nter (ipisnla, isnla)

i nteger intl1a(1000000), itpla(1000000),
*

i cr1a(1000000), isnla(1000000)

poi nter (ipxica, Xica)

poi nter (ipyica, yica)

poi nter (ipzica, zica)

di mensi on xi ca(1000000), yica(1000000), zica(1000000)
pointer (ipitetclra, itetclra)

pointer (ipitettypa, itettypa)

pointer (ipitetoffa, itetoffa)

pointer (ipjtetoffa, jtetoffa)

pointer (ipiteta, iteta)

pointer (ipjteta, jteta)

i nteger itetclra(1000000), itettypa(1000000),
* i tetoffa(1000000), jtetoffa(1000000)

76

o0 00

OXQ]

o000 00 000 000

OO0

i nteger iteta(3,1000000) , jteta(3,1000000)

CGet the existing cnob - its nane is in the variable cnoin

cal |

cno_get _nane(cnoi n,ier)

CGet the scal ar mesh vari abl es

cal |
cal |
cal |
cal |
cal |
cal |
cal |

cno_get _
_'nfo('nelenents',anin,ntets,lencn1itypcn1ier)
_info(' ndimensi ons_topo', cmoin, ndt, | encmitypcmier)

cno_get
cno_get
cno_get _

cno_get i
_info('faces_per_elenent',cnoin, nfpe,lencmitypcmier)
_info(' mbndry', cnoi n, nbndry Iencnlltypcnller)

cno_get
cno_get

nf o(' nnodes' , cnoi n, npoints, lencmitypcmi er)

nf o(' ndi nensi ons_geoni , cnoi n, ndg, | encmitypcmi er)
nf o(' nodes_per _el enent', cnoi n, npe,lencmitypcmier)

CGet pointers to the vector variabl es

call cno_get info('ialias',cnoin,ipialias,lenialias,ictype,ier)
call cno_get_info('intl ,cnoin,ipintl, lenintl,ictype,ier)
call cno_get_info('itpl',cnoin,ipitpl,lenitpl,ictype,ier)
call cno_get_info('icrl',cnoin,ipicrl,lenicrl,ictype,ier)
call cnmo_get _info('isnl',cnoin,ipisnl,|lenisnl,ictype,ier)
cal | cno_get_info('xic',cnoin,ipX|c | enxic,ictype,ier)
call cno_get _info('yic',cnoin,ipyic,lenyic,ictype,ier)
cal | cno_get_info('zic',cnoin i pzic,lenzic,ictype,ier)
call cno_get info('itetclr',cnoin,ipitetclr,lenitetclr,ictype,ier)
call cno_get info('itettyp ,cnoin,ipitettyp,lenitettyp,ictype,ier)
cal | cno_get_info('itetoff',cnoln,|pltetoff,Ienitetoff,ictype,ier)
call cno_get_info('jtetoff',crmoin,ipjtetoff,lenjtetoff,ictype,ier)
call cno_get info('itet',crnoin,ipitet,lenitet,ictype,ier)
call cno_get info('jtet',crmoin,ipjtet,lenjtet,icnotype,ier)

Create the new 2d cno - call it cnoout.
call cno_exist(cnoout,ier)

ier.eq.0 nmeans that the cno already exists - if so release it.

if(ier.eq.0) call cno_rel ease(cnoout, i del ete)

Set active cno to cnoout
cno_set nane(cnoout, i er)

cal |

set scal ar nmesh vari abl es

cal |
cal |

cno_set
cno_set

nf o(' nnodes' , cnoout, npoints, 1,1,ier)
nfo(' nel ements', cnoout, ntets, 1,1,ier)

the following scalars need to be set for a 2d cno

cal |
cal |
cal |
cal |

cno_set _

cno_set

cno_set _
cno_set _

5 D535 35

(' ndi nensi ons_topo',croout, 2,1, 1,ier
(' ndi nensi ons_geonm , croout , 3,1, 1, i er
(' nodes_per _elenent',cnoout, 3,1,1,ie
(' faces_per _elenent',cnoout,3,1,1,ie

fo)
fo)
fo r
fo r

)
)

77

al l ocate nmenory for vector variabl es
call cno_new en(crnoout, ier)

o0 00

now get the pointers to the allocated nenory for the vector data
call cno_get info('im1l ,croout,ipintla,lenintla,icnotype,ier)

call cno_get info('itpl' ,crnoout,ipitpla,lenitpla,icnotype,ier)

call cno_get info('icrl' ,crnoout,ipicrila,lenicrla,icnotype,ier)

call cno_get info('isnl', croout,ipisnla,lenisnla,icnotype,ier)

call cno_get info('xic',cnoout,ipxica,lenxica,icnotype,ier)

call cno_get info('yic',cnoout,ipyica,lenyica,icnotype,ier)

call cno_get info('zic',cnoout,ipzica,lenzica,icnotype,ier)

call cno_get info('itetclr',cnoout,ipitetclra,lenclra,icnotype,ier)
call cno_get info('itettyp' ,cnoout,ipitettypa,lentypa,icnotype,ier)
call cno_get info('itetoff',cnoout,ipitetoffa,lenoffa,icnotype,ier)
call cno_get info('jtetoff',cnoout,ipjtetoffa,lenoffa,icnotype,ier)
call cno_get info('itet',crnoout,ipiteta,leniteta,icnotype,ier)

call cno_get info('jtet',cnoout,ipjteta,lenjteta,icnotype,ier)

C now t he val ues for the vector conponents of the 2d nesh
C obj ect can be set.

e. Utility subroutines

The following subroutines are available to code developers who wish to add modules
to X3D. In the subroutine definitions that follow, input arguments are underlined.
1. Memory Manager
X3D uses dynamic memory allocation. Memory is referenced by a two part name,
block name and partition name. It is allocated in integer or real blocks. Each memory
block is preceeded by a header and terminated by a trailer. The memory manager
always returns the pointer to the data section of the memory block. Length is specified
in words. Type indicates if the words are integer or real. Different platforms will have
different values for integer and real word lengths. These machine dependent values
are collected in the include file machi ne. h.

Allocate a block of memory:

mmgetblk(blkin,prtin,iadr,length,itype,icscode)

blkin block name of memory block

prtin partition name of memory block

iadr pointer to memory block (data section)
length number of words to be allocated

itype 1 for integer, 2 for real

icscode return code, O for no errors

Release a block of memory:
mmrelblk (blkin,prtin,iadr,icscode)

iadr is not used
Release a partition of memory -- all blocks belonging to this partition will be
released:
mmrelprt(prtin,cscode)
Increrment a block of memory:
mmincblk(blkin,prtin,iadr,increment,icscode)

increment number of words to increment memory block
Find pointer to a block of memory:
mmfindbk(blkin,prtin,iadr,length,icscode)

iadr pointer to memory block (data)

length number of words allocated
Return type of a block of memory:
mmgettyp (ipin,itypout,icscode)

79

ipin
itypout

pointer to memory block (data)
type of data 1 for integer, 2 for real

Return number of words in a block of memory:
mmgetlen(ipin,lenout,icscode)

lenpout

number of words in a memory block

Return name ofa block of memory:
mmgetnam (ipin, blkout,prtout,icscode)

blkout
prtout

block name
partition name

Print a dump of allocated memory. This is useful for debugging purposes; the
dump is listed in two parts, by time of allocation and by increasing pointer

address:
mmprint()

Verify memory integrity. Print debug information if the memory block headers or

trailers have been overwritten.

mmverify()
2. Mesh Object

cmo_create(cmo-name,ierror)
Create a new mesh object called nane

cmo-name

ierror

name of new mesh object
error return - O if no errors

cmo_get_info(ioption,cmo-name,iout,lout,itype,ierror)

Get values of scalar attribute of the mesh object. Get pointers to

ioption

vector attributes

name of mesh object attribute whose value is to be
retrieved; the information retrieved may be one of
these key words or it may be the name of a user
supplied attribute (generated by a cmo_addatt
command):

nunber of attributes

nnodes (number of nodes in the mesh)

nel ement s (number of elements in the mesh)
nf aces (number of unique topological facets)
nedges (number of unique edges in mesh) --
nbndry (boundary node flag value)

ndi mensi ons_t opo (topological dimensionality)

80

cmo-name
iout

lout

itype
ierror

ndi mensi ons_geomnodes_per _el enent
edges_per el enent

faces_per_el enent

i set wd (pset membership information)

i al i as (alternate node numbers)

i m 1 (node material)

i t pl (node type)

i cr 1 (constraint numbers for nodes)

i snl (child, parent node correspondence)

i gnl (igeneration numbers for nodes)

xic, yic, zic (node coordinates)

i tetclr (integer array of element material)
itettyp (geometry of element)

xt et wd (eltset membership information)

i tetof f (index into itet array for an element)
jtetof f (index into jtet array for an element)
i t et (node vertices for each element)

j t et (element connectivity)

name of mesh object to be retrieved

value of attribute if the attribute is a scalar or a
pointer to the attribute if the attribute is a vector
length of retrieved attribute

type of attribute (1= integer, 2=real, 3=character)
return flag (O if no errors)

cmo_set_info(ioption,cmo-name,data,lin,itype,ierror)

Set values of scalar attribute of the mesh object. Vector attributes

ioption
data
lin
itype

are set by filling arrays pointed to by the vector
attribute pointer

lattribute name

value of attribute of the salar attribute to be set
length of attribute (1 for scalars)

type of attribute (1= integer, 2=real, 3=character)

cmo_get_name(cmo-name,ierror)

Get the name of the current mesh object.

cmo-name

name of current mesh object

cmo_set_name(cmo-name,ierror)

81

Set the name of the current mesh object.

cmo_get_attribute_name(cmo-name,attribute-index,attribute-name,ierror)

This routine is useful when looping through all the attributes of a
mesh object. To get the number of attributes use
cmo_get_info('number_of_attributes’,...

attribute-index number of attribute

attribute-name name of retrieved attribute

cmo_newlen(cmo-name,ierror)

Adjust memory associated with mesh object. Must be called
whenever the size of the mesh is adjusted in order to
provide memory to the pointered attributes.

cmo_release(cmo-name,ierror)

Release a mesh object called cmo-name and release its memory

cmo-name name of mesh object

ierror error return - O if no errors
get_info_c(parameter-name,cmo-name,'sbcmoprm’,'default’,cdata,ierror)

get_info_i(parameter-name,cmo-name,'sbcmoprm’,'default’,idata,ierror)

get_info_r(parameter-name,cmo-name,'sbcmoprm’,'default’,rdata,ierror)
Retrieve a mesh object parameter value: 'c’ retrieve character
data, 'i' integer data and 'r' real data.
parameter-name name of mesh object parameter

cmo-name name of mesh object
cdata,idata,rdata value of parameter
ierror error return - O if no errors

3. Point Selection

getptyp(point_type name,point_type,ierror)
This routine converts point type names to point types.
See ll.a for a list of point types, names and meanings
point_type_name name of point type

point_type value of point type

unpackpc(npoints,itp,isn,iparents)

This routine returns in the array iparents the parent point
corresponding to each child point i, if point i is a child
point. Ordinary points are their own parents.

npoints number of nodes

82

itpl
isnl
iparents

array of point types

array of parent child links

array of parent node number for each point that is a
child point. - zero otherwise

unpacktp(ioptitp ,iopt2 ,inum,ipitpl,ipitp2,ierror)

This routine sets, or's in, or and's in (depending on iopt2) a 1 in

ioptitp

iopt2

inum
ipitpl
ipitp2

4. Character Length

the array pointed to by ipit2 for each point that fits the

criterion specified by ioptitp. A zero is set, or'd or

and'd otherwise.

criterion

allreal (O£itp1(i)£19)

interior (itp1(i)=0)

inteintf (itp1(i)=2,3,4)

matlintr (itp1(i)=2,4,8,9,12,13,15,19)

boundary (8Eitp1(i))£19)

reflect (itp1(i)=9,10, 12, 14, 15,16,18,19)

free (itpl(i)=8,9,11, 13, 14, 15,17,18)

intrface (itp1()=2,3,4,8,9,12,
13,15,16,17,18,19)

virtual (itp(1)=3,4,8,9,16,17,18,19)

removed (20£itp1(i)£29)

merged (itp1(i)=20)

dudded (itp1(i)=21)

operation

set setitp2tolor0

or orinalor0initp2
and andinalorQinitp2

number of nodes in itpl array
pointer to array of point types
pointer to output array of 1's or 0's (length inum)

Because X3D uses a parser written in C whereas most other modules are written in
FORTRAN, the user must be very careful in using character comparison. Some
character strings will be terminated with a blank (FORTRAN) and some by a null (C).

83

The following functions are provided to return character string length (number of
characters in iword ignoring terminator character).

icharIn(iword) Search for terminating blank or null.

icharInf(iword) Ignore leading blanks then search for terminating blank or null.

icharlnb(iword) Search backwards for first blank or null - uses FORTRAN

function len to give starting point (this is a risky assumption)

5. Retrieving Point Sets and Element Sets
eltlime returns an array of element numbers where the elements belong to the eltset
given in the argument list. Eltsets must be specified by name. On return the array
pointed to by i pnpar y will contain the mpno element numbers that belong to the
eltset.

eltlimc(ichl,ich2,ich3,ipmary,mpno ,ntets, xtetwd)

ichl,ich2,ich3 eset,get,eltset_name

ipmpary pointer to array of elements of eltset_name
mpno number of elements in eltset_name

ntets numer of elements in mesh object

xtetwd array of eltset membership information

pntlimc,pntlimn return an array of node numbers where the nodes belong to the pset

given in the argument list. On return the array pointed to by i pnpary will contain

mpno node numbers. These numbers are the nodes that belong to the pset.
pntlimc(ichl,ich2,ich3 ipmary,mpno,npoints,isetwd,itp1)

ichl,ich2,ich3 pset,get,pset_name

ipmpary pointer to array of node number of pset_name
mpno number of nodes in pset_name

npoints numer of nodes in mesh object

isetwd array of pset membership information

itpl array of point types

pntlimn(ichl,ich2,ich3 ipmary,mpno,npoints,isetwd,itp1)
iptl,ipt2,ipt 3 first node, last node, stride

6. Array CompressionThe following utility routines compress arrays. Note that the
output array may be the same as the input array in which case the compression is
done in place. Also the mask array may be the same as the input array. The name
suffixes of the compression routine may be decoded as m minus (negative), n non-
zero, p positive, z equal to zero. If the routine name ends in rrr, the mask, input and

84

output arrays are all real. If the name ends in a singe r , the mask is real, the input and

output arrays are integers. Otherwise the mask, input and output arrays are all

integers. For example kmprsn(100,int,1,int,1,int,1,num) will compress all the zeros out

of array int.
kmprsm(n,z,iz x,ix,,y,iy,count)

n length of z and x
z array of masks
iz stride in z

X array of source
iX stride in x

y array of output
iy stride iny

count length of y

kmprsnr(n,z,iz,x,ix,,y,iy,count)
kmprsnrrr(n,z,iz,x,ix,,y,iy,count)
km p rs p r (D!Z’E’X!il! ,y,i_\[,COU nt)

kmprsz(n,z,iz X,ix,,y,iy,count)
kmprszr(n,z,iz,Xx,ix,,y,ly,count)

85

X3D REFERENCES:

GEOMETRY

Khamayseh, Ahmed; Ortega,Frank; Trease, Harold, "Ray Tracing for Point Distribution in
Unstructured Grid Generation”, LA-UR-95-4470.

Khamayseh, Ahmed; Ortega,Frank; Kuprat, Andrew, "A Robust Point Location algorithm for
General Polyhedra”, Journal of Computer Aided Geometric Design, LA-UR-95-4465

2-D VORONOI GRIDS:

Trease, H.E. (1981), "A Two-Dimensional Free Lagrangian Hydrodynamics Model,” Ph.D.
Thesis, University of Illinois, Urbana-Champaign.

3-D VORONOI GRIDS:

Trease, H.E. "Three-Dimensional Free Lagrangian Hydrodynamics," Proceedings of the first
Free-Lagrange Conference, Lecture Notes in Physics, Springer-Verlag, Vol. 238, pp. 145-
157, 1985.

3-D MEDIAN GRIDS (X3D):

Fraser D., "Tetrahedral Meshing Considerations for a Three-Dimensional Free-Lagrangian
Code,", Los Alamos National Laboratory report, LA-UR-88-3707, 1988.

Sahota, M.S., "Delaunay Tetrahedralization in a Three-Dimensional Free-Lagrangian
Multimaterial Code,", Proceedings of the Next Free-Lagrange Conference, Jackson Lake
Lodge, Wyoming, June 3-7, 1990, Springer-Verlag Press, Vol. 395, pp. 130-138.

Ahmed Khamayseh, Andrew Kuprat, and Frank Ortega, "A Robust Point Location Algorithm
for General Polyhedra,” (to appear in Computer Aided Geometric Design)

3-D UNSTRUCTURED TETRAHEDRAL GRID RECONNECTION ALGORITHMS (X3D):
Trease, H.E. "Three-Dimensional Free Lagrangian Hydrodynamics," Proceedings of the first
Free-Lagrange Conference, Lecture Notes in Physics, Springer-Verlag, Vol. 238, pp. 145-
157, 1985.

Fraser D., "Tetrahedral Meshing Considerations for a Three-Dimensional Free-Lagrangian
Code,", Los Alamos National Laboratory report, LA-UR-88-3707, 1988.

Painter, J.W. and Marshall, J.C., "Three-Dimensional Reconnection and Fluxing Algorithms,"

Proceedings of the Next Free-Lagrange Conference, Jackson Lake Lodge, Wyoming, June
3-7, 1990, Springer-Verlag Press, Vol. 395, pp. 139-148.

86

Trease, H.E. "Parallel Nearest Neighbor Calculations," Proceedings of the first Free-
Lagrange Conference, Lecture Notes in Physics, Springer-Verlag, Vol. 395, pp. 149-156,
1985.

DIFFUSION EQUATION COUPLING COEFFICIENT CALCULATIONS (X3D):

Trease, H.E. "Three-Dimensional Free Lagrangian Hydrodynamics," Proceedings of the first
Free-Lagrange Conference, Lecture Notes in Physics, Springer-Verlag, Vol. 238, pp. 145-
157, 1985.

Sahota, M.S., "An Explicit-Implicit Solution of the Hydrodynamic and Radiation Equations,”,
Proceedings of the Next Free-Lagrange Conference, Jackson Lake Lodge, Wyoming, June
3-7, 1990, Springer-Verlag Press, Vol. 395, pp. 57-65.

Trease, H.E. and Dean, S.H., "Thermal Diffusion in the X-7 Three-Dimensional Code,"
Proceedings of the Next Free-Lagrange Conference, Jackson Lake Lodge, Wyoming, June
3-7, 1990, Springer-Verlag Press, Vol. 395, pp. 193-202.

UNSTURCTURED GRID SMOOTHING ALGORITHMS:

Ahmed Khamayseh and Andrew Kuprat, "Anisotropic Smoothing and Solution Adaption for
Unstructured Grids," LA-UR-95-2205, International Journal for Numerical Methods in
Engineering, (submitted).

Kuprat, Andrew, "Adaptive Smoothing Techniques for 3-D Unstructured Meshes", LA-UR-96-
1116.

Kuprat, Andrew, et al. "Moving Adaptive Unstructured 3-D Meshes in Semiconductor Process
Modeling Applications"”, VLSI Journal, LA-UR-95-4128.

UNSTRUCTURED GRID ADAPTIVE MESH REFINEMENT (AMR):

Trease, H.E., "Adaptive Mesh Refinement (AMR) On Unstructured Tetrahedral Grids", to be
published.

87

